Nanomechanical Signatures of Extracellular Vesicles from Hematologic Cancer Patients Unraveled by Atomic Force Microscopy for Liquid Biopsy

Cells release extracellular vesicles (EVs) as the carriers for intercellular communications to regulate life activities. Particularly, it is increasingly apparent that mechanical forces play an essential role in biological systems. The nanomechanical properties of EVs and their dynamics in cancer de...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 23; no. 4; pp. 1591 - 1599
Main Authors Feng, Yaqi, Liu, Meichen, Li, Xinxin, Li, Mi, Xing, Xiaojing, Liu, Lianqing
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cells release extracellular vesicles (EVs) as the carriers for intercellular communications to regulate life activities. Particularly, it is increasingly apparent that mechanical forces play an essential role in biological systems. The nanomechanical properties of EVs and their dynamics in cancer development are still not fully understood. Herein, with the use of atomic force microscopy (AFM), the nanomechanical signatures of EVs from the liquid biopsies of hematologic cancer patients were unraveled. Single native EVs were probed by AFM under aqueous conditions. The elastic and viscous properties of EVs were measured and visualized to correlate EV mechanics with EV geometry. Experimental results remarkably reveal the significant differences in EV mechanics among multiple myeloma patients, lymphoma patients, and healthy volunteers. The study unveils the unique nanomechanical signatures of EVs in hematologic cancers, which will benefit the studies of liquid biopsies for cancer diagnosis and prognosis with translational significance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.3c00093