Spike Growth on Patterned Gold Nanoparticle Scaffolds
This work reports a scaffold-templated, bottom-up synthesis of 3D anisotropic nanofeatures on periodic arrays of gold nanoparticles (AuNPs). Our method relies on substrate-bound AuNPs as large seeds with hemispherical shapes and smooth surfaces after the thermal annealing of as-fabricated particles....
Saved in:
Published in | Nano letters Vol. 23; no. 23; pp. 11260 - 11265 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
13.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This work reports a scaffold-templated, bottom-up synthesis of 3D anisotropic nanofeatures on periodic arrays of gold nanoparticles (AuNPs). Our method relies on substrate-bound AuNPs as large seeds with hemispherical shapes and smooth surfaces after the thermal annealing of as-fabricated particles. Spiky features were grown by immersing the patterned AuNPs into a growth solution consisting of a gold salt and Good’s buffer; the number and length of spikes could be tuned by changing the solution pH and buffer concentration. Intermediate structures that informed the growth mechanism were characterized as a function of time by correlating the optical properties and spike features. Large-area (cm2) spiky AuNP arrays exhibited surface-enhanced Raman spectroscopy enhancement that was associated with increased numbers of high-aspect-ratio spikes formed on the AuNP seeds. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.3c03778 |