Colloidal Stability Window for Carboxylated Cellulose Nanocrystals: Considerations for Handling, Characterization, and Formulation
The scale of production of cellulose nanocrystals (CNCs) has increased dramatically to meet the growing demand for sustainably sourced materials. This work defines the colloidal stability window for commercially produced carboxylated CNCs (DextraCel) compared to the more traditional sulfated CNCs. P...
Saved in:
Published in | Langmuir Vol. 39; no. 30; pp. 10321 - 10334 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.08.2023
|
Online Access | Get full text |
Cover
Loading…
Summary: | The scale of production of cellulose nanocrystals (CNCs) has increased dramatically to meet the growing demand for sustainably sourced materials. This work defines the colloidal stability window for commercially produced carboxylated CNCs (DextraCel) compared to the more traditional sulfated CNCs. Phase diagrams showing the stable, reversibly agglomerated, irreversibly aggregated/sedimented, and colloidal glass “zones” as a function of suspension pH, ionic strength, CNC surface charge content, counterion, and concentration are presented. The pK a of carboxylated CNCs was measured to be 5.1, and suspensions of carboxylated CNCs (0.5–1.5 wt %) were visually stable from pH 3 to 11 (without salt). Carboxylated CNCs were highly sensitive to ionic strength, demonstrating some agglomeration with as little as 5 mM NaCl, supporting that weak acid surface groups and lower charge contents make CNCs more sensitive to solution conditions. Surface charge content had the greatest influence on colloidal stability followed by the counterion; carboxylated CNCs were more stable in the “as-received” sodium form, whereas sulfated CNCs had improved stability in acid form after ion exchange. The stability of carboxylated CNCs with industrially relevant additives (ionic and nonionic surfactants and initiators) was also investigated. Less concentrated suspensions were more colloidally stable, emphasizing that characterization and processing of CNCs favor dilute conditions. If carboxylated CNCs are subjected to conditions outside of their colloidal stability window, simple dilution or pH adjustment does not return them to colloidally stable discrete nanoparticles; however, ultrasonication can redisperse agglomerates. This study offers guidelines for handling carboxylated CNCs to broaden the range of products that can be improved by their incorporation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0743-7463 1520-5827 1520-5827 |
DOI: | 10.1021/acs.langmuir.3c00319 |