Integrating Plasmonic Supercrystals in Microfluidics for Ultrasensitive, Label-Free, and Selective Surface-Enhanced Raman Spectroscopy Detection
Surface-enhanced Raman spectroscopy (SERS) microfluidic chips for label-free and ultrasensitive detection are fabricated by integrating a plasmonic supercrystal within microfluidic channels. This plasmonic platform allows the uniform infiltration of the analytes within the supercrystal, reaching the...
Saved in:
Published in | ACS applied materials & interfaces Vol. 12; no. 41; pp. 46557 - 46564 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
14.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Surface-enhanced Raman spectroscopy (SERS) microfluidic chips for label-free and ultrasensitive detection are fabricated by integrating a plasmonic supercrystal within microfluidic channels. This plasmonic platform allows the uniform infiltration of the analytes within the supercrystal, reaching the so-called hot spots. Moreover, state-of-the-art simulations performed using large-scale supercrystal models demonstrate that the excellent SERS response is due to the hierarchical nanoparticle organization, the interparticle separation (IPS), and the presence of supercrystal defects. Proof-of-concept experiments confirm the outstanding performance of the microfluidic chips for the ultradetection of (bio)molecules with no metal affinity. In fact, a limit of detection (LOD) as low as 10–19 M was reached for crystal violet. The SERS microfluidic chips show excellent sensitivity in the direct analysis of pyocyanin secreted by Pseudomonas aeruginosa grown in a liquid culture medium. Finally, the further integration of a silica-based column in the plasmonic microchip provides charge-selective SERS capabilities as demonstrated for a mixture of positively and negatively charged molecules. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c13940 |