Anisotropic Hydrogen Etching of Chemical Vapor Deposited Graphene

We report a simple, clean, and highly anisotropic hydrogen etching method for chemical vapor deposited (CVD) graphene catalyzed by the copper substrate. By exposing CVD graphene on copper foil to hydrogen flow around 800 °C, we observed that the initially continuous graphene can be etched to have ma...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 6; no. 1; pp. 126 - 132
Main Authors Zhang, Yi, Li, Zhen, Kim, Pyojae, Zhang, Luyao, Zhou, Chongwu
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.01.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We report a simple, clean, and highly anisotropic hydrogen etching method for chemical vapor deposited (CVD) graphene catalyzed by the copper substrate. By exposing CVD graphene on copper foil to hydrogen flow around 800 °C, we observed that the initially continuous graphene can be etched to have many hexagonal openings. In addition, we found that the etching is temperature dependent. Compared to other temperatures (700, 900, and 1000 °C), etching of graphene at 800 °C is most efficient and anisotropic. Of the angles of graphene edges after etching, 80% are 120°, indicating the etching is highly anisotropic. No increase of the D band along the etched edges indicates that the crystallographic orientation of etching is in the zigzag direction. Furthermore, we observed that copper played an important role in catalyzing the etching reaction, as no etching was observed for graphene transferred to Si/SiO2 under similar conditions. This highly anisotropic hydrogen etching technology may work as a simple and convenient way to determine graphene crystal orientation and grain size and may enable the etching of graphene into nanoribbons for electronic applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1936-0851
1936-086X
DOI:10.1021/nn202996r