A Reactive ortho-Quinone Generated by Tyrosinase-Catalyzed Oxidation of the Skin Depigmenting Agent Monobenzone: Self-Coupling and Thiol-Conjugation Reactions and Possible Implications for Melanocyte Toxicity
Monobenzone (hydroquinone monobenzylether, 1) is a potent skin depigmenting agent that causes irreversible loss of epidermal melanocytes by way of a tyrosinase-dependent mechanism so far little understood. Herein, we show that 1 can be oxidized by mushroom tyrosinase to an unstable o-quinone (1-quin...
Saved in:
Published in | Chemical research in toxicology Vol. 22; no. 8; pp. 1398 - 1405 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.08.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Monobenzone (hydroquinone monobenzylether, 1) is a potent skin depigmenting agent that causes irreversible loss of epidermal melanocytes by way of a tyrosinase-dependent mechanism so far little understood. Herein, we show that 1 can be oxidized by mushroom tyrosinase to an unstable o-quinone (1-quinone) that has been characterized by comparison of its properties with those of a synthetic sample obtained by o-iodoxybenzoic acid-mediated oxidation of 1. Preparative scale oxidation of 1 with tyrosinase and catalytic l-DOPA, followed by reductive workup and acetylation, led to the isolation of two main products that were identified as the acetylated catechol derivative 4 and an unusual biphenyl-type dimer of 4, acetylated 5, arising evidently by coupling of 4 with 1-quinone. In the presence of l-cysteine or N-acetyl-l-cysteine, formation of 4 and 5 was inhibited, and the reaction led instead to monoadducts (6 or 9) and diadducts (7 and 8). A similar behavior was observed when the tyrosinase-promoted oxidation of 1 was carried out in the presence of sulfhydryl-containing peptides, such as reduced glutathione, or proteins, such as bovine serum albumin (BSA), as inferred by detection of adduct 9 by high pressure liquid chromatography−electrochemical detection (HPLC-ED) after acid hydrolysis. The generation and reaction chemistry of 1-quinone described in this article may bear relevance to the etiopathogenetic mechanisms of monobenzone-induced leukoderma as well as to the recently proposed haptenation hypothesis of vitiligo, a disabling pigmentary disorder characterized by irreversible melanocyte loss. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0893-228X 1520-5010 |
DOI: | 10.1021/tx900018q |