Extraction, Characterization of Components, and Potential Thermoplastic Applications of Camelina Meal Grafted with Vinyl Monomers

Camelina meal contains oil, proteins, and carbohydrates that can be used to develop value-added bioproducts. In addition to containing valuable polymers, coproducts generated during the production of biofuels are inexpensive and renewable. Camelina is a preferred oilseed crop for biodiesel productio...

Full description

Saved in:
Bibliographic Details
Published inJournal of agricultural and food chemistry Vol. 60; no. 19; pp. 4872 - 4879
Main Authors Reddy, Narendra, Jin, Enqi, Chen, Lihong, Jiang, Xue, Yang, Yiqi
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 16.05.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Camelina meal contains oil, proteins, and carbohydrates that can be used to develop value-added bioproducts. In addition to containing valuable polymers, coproducts generated during the production of biofuels are inexpensive and renewable. Camelina is a preferred oilseed crop for biodiesel production because camelina is easier to grow and provides better yields. In this research, the components in camelina meal were extracted and studied for their composition, structure, and properties. The potential of using the camelina meal to develop thermoplastics was also studied by grafting various vinyl monomers. Oil (19%) extracted from camelina meal could be useful for food and fuel applications, and proteins and cellulose in camelina meal could be useful in the development of films, fibers, and thermoplastics. Thermoplastic films developed from grafted camelina meal had excellent wet tensile properties, unlike thermoplastics developed from other biopolymers. Camelina meal grafted with butylmethacrylate (BMA) had high dry and wet tensile strengths of 53.7 and 17.3 MPa, respectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-8561
1520-5118
DOI:10.1021/jf300695k