Redox Homeostasis is Disturbed by Redox Cycling between Reactive Cysteines of Thioredoxin 1 and 9,10-Phenanthrenequinone, an Atmospheric Electron Acceptor
9,10-Phenanthrenequinone (9,10-PQ) is a toxicant in diesel exhaust particles and airborne particulate matter ≤2.5 μm in diameter. It is an efficient electron acceptor that readily reacts with dithiol compounds in vitro, resulting in the oxidation of thiol groups and concomitant generation of reactiv...
Saved in:
Published in | Chemical research in toxicology Vol. 35; no. 8; pp. 1425 - 1432 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
15.08.2022
|
Online Access | Get full text |
Cover
Loading…
Summary: | 9,10-Phenanthrenequinone (9,10-PQ) is a toxicant in diesel exhaust particles and airborne particulate matter ≤2.5 μm in diameter. It is an efficient electron acceptor that readily reacts with dithiol compounds in vitro, resulting in the oxidation of thiol groups and concomitant generation of reactive oxygen species (ROS). However, it remains to be elucidated whether 9,10-PQ interacts with proximal protein dithiols. In the present study, we used thioredoxin 1 (Trx1) as a model of proteins with reactive proximal cysteines and examined whether it reacts with 9,10-PQ in cells and tissues, thereby affecting its catalytic activity and thiol status. Intratracheal injection of 9,10-PQ into mice resulted in protein oxidation and diminished Trx activity in the lungs. Using recombinant wild-type and C32S/C35S Trx1, we found that Cys32 and Cys35 selectively serve as electron donor sites for redox reactions with 9,10-PQ that lead to substantial inhibition of Trx activity. Addition of dithiothreitol restored the Trx activity inhibited by 9,10-PQ. Exposure of cultured cells to 9,10-PQ caused intracellular reactive oxygen species generation that led to protein oxidation, Trx1 dimerization, p38 phosphorylation, and apoptotic cell death. Overexpression of Trx1 blocked these 9,10-PQ-mediated events. These results suggest that the interaction of the reactive cysteines of Trx1 with 9,10-PQ causes oxidative stress, leading to disruption of redox homeostasis. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0893-228X 1520-5010 |
DOI: | 10.1021/acs.chemrestox.2c00174 |