Exploring the destructive synergy between IL-33 and Suilysin hemolysis on blood-brain barrier stability
type 2 (SS2) is a zoonotic pathogen capable of eliciting meningitis, presenting significant challenges to both the swine industry and public health. Suilysin (Sly), one of SS2 most potent virulence determinants, releases a surfeit of inflammatory agents following red blood cell lysis. Notably, while...
Saved in:
Published in | Microbiology spectrum Vol. 12; no. 8; p. e0061224 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
06.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | type 2 (SS2) is a zoonotic pathogen capable of eliciting meningitis, presenting significant challenges to both the swine industry and public health. Suilysin (Sly), one of SS2 most potent virulence determinants, releases a surfeit of inflammatory agents following red blood cell lysis. Notably, while current research on Sly role in SS2-induced meningitis predominantly centers on its interaction with the blood-brain barrier (BBB), the repercussions of Sly hemolytic products on BBB function have largely been sidestepped. In this vein, our study delves into the ramifications of Sly-induced hemolysis on BBB integrity. We discern that Sly hemolytic derivatives exacerbate the permeability of Sly-induced
BBB models. Within these Sly hemolytic products, Interleukin-33 (IL-33) disrupts the expression and distribution of Claudin-5 in brain microvascular endothelial cells, facilitating the release of Interleukin-6 (IL-6) and Interleukin-8 (IL-8), thereby amplifying BBB permeability. Preliminary mechanistic insights suggest that IL-33-driven expression of IL-6 and IL-8 is orchestrated by the p38-mitogen-activated protein kinase signaling, whereas matrix metalloproteinase 9 mediates IL-33-induced suppression of Claudin-5. To validate these
findings, an SS2-infected mouse model was established, and upon intravenous administration of growth stimulation expressed gene 2 (ST2) antibodies,
results further underscored the pivotal role of the IL-33/ST2 axis during SS2 cerebral invasion. In summation, this study pioneerly illuminates the involvement of Sly hemolytic products in SS2-mediated BBB compromise and spotlights the instrumental role and primary mechanism of IL-33 therein. These insights enrich our comprehension of SS2 meningitis pathogenesis, laying pivotal groundwork for therapeutic advancements against SS2-induced meningitis.IMPORTANCEThe treatment of meningitis caused by
type 2 (SS2) has always been a clinical challenge. Elucidating the molecular mechanisms by which SS2 breaches the blood-brain barrier (BBB) is crucial for the development of meningitis therapeutics. Suilysin (Sly) is one of the most important virulence factors of SS2, which can quickly lyse red blood cells and release large amounts of damage-associated molecular patterns, such as hemoglobin, IL-33, cyclophilin A, and so on. However, the impact of these hemolytic products on the function of BBB is unknown and ignored. This study is the first to investigate the effect of Sly hemolytic products on BBB function. The data are crucial for the study of the pathogenesis of SS2 meningitis and can provide an important reference for the development of meningitis therapeutics. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors declare no conflict of interest. Yang Fu, Jing Jie, and Liang Lei contributed equally to this article. Author order was determined in order of increasing seniority. |
ISSN: | 2165-0497 2165-0497 |
DOI: | 10.1128/spectrum.00612-24 |