Rapid Inhibition Profiling Identifies a Keystone Target in the Nucleotide Biosynthesis Pathway

Understanding the mechanism of action (MOA) of new antimicrobial agents is a critical step in drug discovery but is notoriously difficult for compounds that appear to inhibit multiple cellular pathways. We recently described image-based approaches [bacterial cytological profiling and rapid inducible...

Full description

Saved in:
Bibliographic Details
Published inACS chemical biology Vol. 13; no. 12; pp. 3251 - 3258
Main Authors Peters, Christine E, Lamsa, Anne, Liu, Roland B, Quach, Diana, Sugie, Joseph, Brumage, Lauren, Pogliano, Joe, Lopez-Garrido, Javier, Pogliano, Kit
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 21.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Understanding the mechanism of action (MOA) of new antimicrobial agents is a critical step in drug discovery but is notoriously difficult for compounds that appear to inhibit multiple cellular pathways. We recently described image-based approaches [bacterial cytological profiling and rapid inducible profiling (RIP)] for identifying the cellular pathways targeted by antibiotics. Here we have applied these methods to examine the effects of proteolytically degrading enzymes involved in pyrimidine nucleotide biosynthesis, a pathway that produces intermediates for transcription, DNA replication, and cell envelope synthesis. We show that rapid removal of enzymes directly involved in deoxyribonucleotide synthesis blocks DNA replication. However, degradation of cytidylate kinase (CMK), which catalyzes reactions involved in the synthesis of both ribonucleotides and deoxyribonucleotides, blocks both DNA replication and wall teichoic acid biosynthesis, producing cytological effects identical to those created by simultaneously inhibiting both processes with the antibiotics ciprofloxacin and tunicamycin. Our results suggest that RIP can be used to identify and characterize potential keystone enzymes like CMK whose inhibition dramatically affects multiple pathways, thereby revealing important metabolic connections. Identifying and understanding the role of keystone targets might also help to determine the MOAs of drugs that appear to inhibit multiple targets.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1554-8929
1554-8937
DOI:10.1021/acschembio.8b00273