Olfactory Diagnosis Model for Lung Health Evaluation Based on Pyramid Pooling and SHAP-Based Dual Encoders

This study introduces a novel deep learning framework for lung health evaluation using exhaled gas. The framework synergistically integrates pyramid pooling and a dual-encoder network, leveraging SHapley Additive exPlanations (SHAP) derived feature importance to enhance its predictive capability. Th...

Full description

Saved in:
Bibliographic Details
Published inACS sensors Vol. 9; no. 9; pp. 4934 - 4946
Main Authors Peng, Jingyi, Mei, Haixia, Yang, Ruiming, Meng, Keyu, Shi, Lijuan, Zhao, Jian, Zhang, Bowei, Xuan, Fuzhen, Wang, Tao, Zhang, Tong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study introduces a novel deep learning framework for lung health evaluation using exhaled gas. The framework synergistically integrates pyramid pooling and a dual-encoder network, leveraging SHapley Additive exPlanations (SHAP) derived feature importance to enhance its predictive capability. The framework is specifically designed to effectively distinguish between smokers, individuals with chronic obstructive pulmonary disease (COPD), and control subjects. The pyramid pooling structure aggregates multilevel global information by pooling features at four scales. SHAP assesses feature importance from the eight sensors. Two encoder architectures handle different feature sets based on their importance, optimizing performance. Besides, the model’s robustness is enhanced using the sliding window technique and white noise augmentation on the original data. In 5-fold cross-validation, the model achieved an average accuracy of 96.40%, surpassing that of a single encoder pyramid pooling model by 10.77%. Further optimization of filters in the transformer convolutional layer and pooling size in the pyramid module increased the accuracy to 98.46%. This study offers an efficient tool for identifying the effects of smoking and COPD, as well as a novel approach to utilizing deep learning technology to address complex biomedical issues.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2379-3694
2379-3694
DOI:10.1021/acssensors.4c01584