Detecting and Imaging of γ‑Glutamytranspeptidase Activity in Serum, Live Cells, and Pathological Tissues with a High Signal-Stability Probe by Releasing a Precipitating Fluorochrome

γ-Glutamytranspeptidase (GGT) is a significant tumor-related biomarker that overexpresses in several tumor cells. Accurate detection and imaging of GGT activity in serum, live cells, and pathological tissues hold great significance for cancer diagnosis, treatment, and management. Recently developed...

Full description

Saved in:
Bibliographic Details
Published inACS sensors Vol. 3; no. 7; pp. 1354 - 1361
Main Authors Ou-Yang, Juan, Li, Yong-Fei, Wu, Ping, Jiang, Wen-Li, Liu, Hong-Wen, Li, Chun-Yan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:γ-Glutamytranspeptidase (GGT) is a significant tumor-related biomarker that overexpresses in several tumor cells. Accurate detection and imaging of GGT activity in serum, live cells, and pathological tissues hold great significance for cancer diagnosis, treatment, and management. Recently developed small molecule fluorescent probes for GGT tend to diffuse to the whole cytoplasm and then translocate out of live cells after enzymatic reaction, which make them fail to provide high spatial resolution and long-term imaging in biological systems. To address these problems, a novel fluorescent probe (HPQ-PDG) which releases a precipitating fluorochrome upon the catalysis of GGT is designed and synthesized. HPQ-PDG is able to detect GGT activity with high spatial resolution and good signal-stability. The large Stokes shift of the probe enables it to detect the activity of GGT in serum samples with high sensitivity. To our delight, the probe is used for imaging GGT activity in live cells with the ability of discriminating cancer cells from normal cells. What’s more, we successfully apply it for pathological tissues imaging, with the results indicating that the potential application of HPQ-PDG in histopathological examination. All these results demonstrate the potential application of HPQ-PDG in the clinic.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2379-3694
2379-3694
DOI:10.1021/acssensors.8b00274