Experimental study of the dynamic behavior and segregation of density-bidisperse granular sliding masses at the laboratory scale

From the understanding of dynamics and processes of rapid granular flows and the granular-segregation mechanism in gravity-driven flow, we can clarify the particle-composition structure in the downstream areas of avalanches in geophysical contexts, such as landslides, rock falls, and snow-slab avala...

Full description

Saved in:
Bibliographic Details
Published inLandslides Vol. 18; no. 6; pp. 2095 - 2110
Main Authors Sheng, Li-Tsung, Hsiau, Shu-San, Hsu, Nai-Wen
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:From the understanding of dynamics and processes of rapid granular flows and the granular-segregation mechanism in gravity-driven flow, we can clarify the particle-composition structure in the downstream areas of avalanches in geophysical contexts, such as landslides, rock falls, and snow-slab avalanches. Such dynamics also provide a basis for geophysical studies. This study experimentally investigates the dynamic behavior and segregation phenomena of a density-bidisperse, rapid, granular flow down a quasi-2D, rough, inclined rectangular chute. Particles with two density ratios are used to investigate the mechanism of density-induced segregation, and four chute-inclination angles are tested to examine the influence of driving forces. The dynamics of the mixture flow—which includes the flow-depth evolution, stream-wise and depth-wise velocity profiles, shear rate, and granular temperature in the upper high-shear band of the flow—are obtained from particle image velocimetry (PIV) measurements. The two-dimensional concentration distributions of the particles in the stream-wise direction are also obtained using 2D image processing to determine the segregation state. In the upstream region, the variation in the concentration of heavier particles is defined as the strength of the density-induced segregation state, S d . Our results indicate that the mixture-flow parameter—particularly the shear rate and the granular temperature in the upper high-shear band—crucially influence the strength of particle segregation in granular avalanches. In the upstream region, a higher shear rate and a higher granular temperature in the upper high-velocity band result in a smaller drag force in the mixture flow, causing stronger density-induced particle segregation. These results well describe the entire processes of dense granular flows, from upstream initiation to the downstream steady state. Therefore, they reveal the structure of the mixed flow in the depth direction and are expected to explain various gravity-driven mixture granular flows.
ISSN:1612-510X
1612-5118
DOI:10.1007/s10346-021-01629-1