Systematic Investigation of Organic Photovoltaic Cell Charge Injection/Performance Modulation by Dipolar Organosilane Interfacial Layers

With the goal of investigating and enhancing anode performance in bulk-heterojunction (BHJ) organic photovoltaic (OPV) cells, the glass/tin-doped indium oxide (ITO) anodes are modified with a series of robust silane-tethered bis(fluoroaryl)amines to form self-assembled interfacial layers (IFLs). The...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 5; no. 18; pp. 9224 - 9240
Main Authors Song, Charles Kiseok, White, Alicia C., Zeng, Li, Leever, Benjamin J., Clark, Michael D., Emery, Jonathan  D. , Lou, Sylvia J., Timalsina, Amod, Chen, Lin X., Bedzyk, Michael J., Marks, Tobin J.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.09.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:With the goal of investigating and enhancing anode performance in bulk-heterojunction (BHJ) organic photovoltaic (OPV) cells, the glass/tin-doped indium oxide (ITO) anodes are modified with a series of robust silane-tethered bis(fluoroaryl)amines to form self-assembled interfacial layers (IFLs). The modified ITO anodes are characterized by contact angle measurements, X-ray reflectivity, ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, grazing incidence X-ray diffraction, atomic force microscopy, and cyclic voltammetry. These techniques reveal the presence of hydrophobic amorphous monolayers of 6.68 to 9.76 Å thickness, and modified anode work functions ranging from 4.66 to 5.27 eV. Two series of glass/ITO/IFL/active layer/LiF/Al BHJ OPVs are fabricated with the active layer = poly(3-hexylthiophene):phenyl-C71-butyric acid methyl ester (P3HT:PC71BM) or poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)-carbonyl]thi-eno[3,4-b]thiophenediyl]]:phenyl-C71-butyric acid methyl ester (PTB7:PC71BM). OPV analysis under AM 1.5G conditions reveals significant performance enhancement versus unmodified glass/ITO anodes. Strong positive correlations between the electrochemically derived heterogeneous electron transport rate constants (k s) and the device open circuit voltage (V oc), short circuit current (J sc), hence OPV power conversion efficiency (PCE), are observed for these modified anodes. Furthermore, the strong functional dependence of the device response on k s increases as greater densities of charge carriers are generated in the BHJ OPV active layer, and is attributable to enhanced anode carrier extraction in the case of high-k s IFLs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
DOI:10.1021/am4030609