Pressure-Induced Phase Changes in Cesium Lead Bromide Perovskite Nanocrystals with and without Ruddlesden–Popper Faults

Lead halide perovskites have a rich landscape of structural and optical properties, which can be explored and possibly controlled by applying high pressure. Despite several reports on high-pressure studies of CsPbBr3 nanocrystals (NCs), there have so far been no studies under pressure that incorpora...

Full description

Saved in:
Bibliographic Details
Published inChemistry of materials Vol. 32; no. 2; pp. 785 - 794
Main Authors Yesudhas, Sorb, Morrell, Maria V, Anderson, Matthew J, Ullrich, Carsten A, Kenney-Benson, Curtis, Xing, Yangchuan, Guha, Suchismita
Format Journal Article
LanguageEnglish
Published American Chemical Society 28.01.2020
Online AccessGet full text

Cover

Loading…
More Information
Summary:Lead halide perovskites have a rich landscape of structural and optical properties, which can be explored and possibly controlled by applying high pressure. Despite several reports on high-pressure studies of CsPbBr3 nanocrystals (NCs), there have so far been no studies under pressure that incorporate planar defects. CsPbBr3 NCs with Ruddlesden–Popper (RP) faults, formed via post-synthetic fusion growth, are significantly larger in size than as-synthesized NCs and display exceptional emission stability. Here, we compare synchrotron-based high-pressure X-ray diffraction and photoluminescence (PL) properties of CsPbBr3 (without RP) and RP-CsPbBr3 (with RP) and resolve their crystal structure under pressure for the first time. CsPbBr3 undergoes a phase transition from the orthorhombic Pnma phase at ambient pressure to the cubic Pm3̅m phase at 1.7 GPa, and RP-CsPbBr3 transforms from Pnma to the monoclinic P21/m phase at 0.74 GPa in addition to several isostructural transitions. Density-functional calculations predict a narrowing of the band gap with pressure, concomitant with the PL energies. The RP-CsPbBr3 NCs exhibit enhanced PL intensity at 1 GPa and show band gap opening at high pressures. This study opens new strategies for not only tuning just the structural properties but also tuning planar defects in alkali halide lead crystals for improved optical properties.
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.9b04157