Mechanism of mining-induced landslides in the karst mountains of Southwestern China: a case study of the Baiyan landslide in Guizhou

Large rocky landslides induced by underground mining are the primary type of geological disaster in the karst mountains of southwestern China. In this study, by integrating field surface surveys, interferometric synthetic aperture radar (InSAR) monitoring, and discrete element simulations, we analyz...

Full description

Saved in:
Bibliographic Details
Published inLandslides Vol. 20; no. 7; pp. 1481 - 1495
Main Authors Li, Bin, Zhao, Chaoying, Li, Jun, Chen, Hengyi, Gao, Yang, Cui, Fangpeng, Wan, Jiawei
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Large rocky landslides induced by underground mining are the primary type of geological disaster in the karst mountains of southwestern China. In this study, by integrating field surface surveys, interferometric synthetic aperture radar (InSAR) monitoring, and discrete element simulations, we analyzed the deformation evolution of steep cliffs with karst structural planes under mining disturbance. Based on the stress transfer, deformation response, and instability precursors, a landslide instability model was developed. The results revealed that the instability boundaries and the instability mode were controlled by the large structural plane at the top of the mountain. Underground mining accelerated the uneven subsidence of the overlying strata, which led to expansion and penetration of the karst fissure structural planes and fracturing of the rock base, which are the main reason for the instability of the mountain. Underground mining caused internal stress fluctuation of the overlying strata, and the mountain experienced four stages during this process, i.e., development of karst fissure structural planes, fissures expansion and rock base fracturing, further fissures expansion and rock base crashing, and fissures penetration and shear failure. The mining-induced failure of mountain with large karst structural planes can be described as tensile shear-fracturing crashing failure. The InSAR monitoring results revealed that accelerated deformation occurred in the source area starting 20 days before the Baiyan landslide. In addition, 25 potential deformation landslides were identified in Zhijin County, Guizhou Province. Hence, InSAR technology can be used for early-stage detection and warning of similar landslides.
Bibliography:ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ISSN:1612-510X
1612-5118
DOI:10.1007/s10346-023-02047-1