Single Atoms on a Nitrogen-Doped Boron Phosphide Monolayer: A New Promising Bifunctional Electrocatalyst for ORR and OER

Efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional electrocatalysts have been pursued for decades. Meanwhile, single metal atoms embedded in a two-dimensional material substrate (2D-substrate) have emerged as an outstanding catalyst. Herein, we report on compu...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 12; no. 47; pp. 52549 - 52559
Main Authors Zeng, Hanghang, Liu, Xinyi, Chen, Fengbo, Chen, Zhiguo, Fan, Xiaoli, Lau, Woonming
Format Journal Article
LanguageEnglish
Published American Chemical Society 25.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional electrocatalysts have been pursued for decades. Meanwhile, single metal atoms embedded in a two-dimensional material substrate (2D-substrate) have emerged as an outstanding catalyst. Herein, we report on computational ORR/OER efficiencies of a series of single atom catalyst systems, with a nitrogen-doped boron phosphide monolayer (N3-BP) as the 2D-substrate, and with Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rh, Pd, Ir, and Pt as the single-atom subject (M). In brief, our density functional theory results show that the overpotentials for ORR/OER are low for CoN3-BP, NiN3-BP, and PtN3-BP, with {ηORR; ηOER} of {0.36; 0.42 V}, {0.29; 0.44 V}, and {0.32; 0.25 V}, respectively. The relevant attributes such as the chemical stability of the 2D-substrate in the ORR/OER environments, immobilization of the single-atom subject on the 2D-substrate, and mechanisms of the ORR/OER activity and the catalyst recovery on the MN3-BP catalysts were carefully examined. The key to the comparative study is how the electronic states of the reaction center near the Fermi level of the catalytic system match the frontier orbitals of ORR/OER reaction intermediates. In short, our method predicts the ORR/OER catalytic efficiencies of novel catalysts via a single-atom/2D-substrate design strategy.
AbstractList Efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional electrocatalysts have been pursued for decades. Meanwhile, single metal atoms embedded in a two-dimensional material substrate (2D-substrate) have emerged as an outstanding catalyst. Herein, we report on computational ORR/OER efficiencies of a series of single atom catalyst systems, with a nitrogen-doped boron phosphide monolayer (N3-BP) as the 2D-substrate, and with Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rh, Pd, Ir, and Pt as the single-atom subject (M). In brief, our density functional theory results show that the overpotentials for ORR/OER are low for CoN3-BP, NiN3-BP, and PtN3-BP, with {ηORR; ηOER} of {0.36; 0.42 V}, {0.29; 0.44 V}, and {0.32; 0.25 V}, respectively. The relevant attributes such as the chemical stability of the 2D-substrate in the ORR/OER environments, immobilization of the single-atom subject on the 2D-substrate, and mechanisms of the ORR/OER activity and the catalyst recovery on the MN3-BP catalysts were carefully examined. The key to the comparative study is how the electronic states of the reaction center near the Fermi level of the catalytic system match the frontier orbitals of ORR/OER reaction intermediates. In short, our method predicts the ORR/OER catalytic efficiencies of novel catalysts via a single-atom/2D-substrate design strategy.Efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional electrocatalysts have been pursued for decades. Meanwhile, single metal atoms embedded in a two-dimensional material substrate (2D-substrate) have emerged as an outstanding catalyst. Herein, we report on computational ORR/OER efficiencies of a series of single atom catalyst systems, with a nitrogen-doped boron phosphide monolayer (N3-BP) as the 2D-substrate, and with Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rh, Pd, Ir, and Pt as the single-atom subject (M). In brief, our density functional theory results show that the overpotentials for ORR/OER are low for CoN3-BP, NiN3-BP, and PtN3-BP, with {ηORR; ηOER} of {0.36; 0.42 V}, {0.29; 0.44 V}, and {0.32; 0.25 V}, respectively. The relevant attributes such as the chemical stability of the 2D-substrate in the ORR/OER environments, immobilization of the single-atom subject on the 2D-substrate, and mechanisms of the ORR/OER activity and the catalyst recovery on the MN3-BP catalysts were carefully examined. The key to the comparative study is how the electronic states of the reaction center near the Fermi level of the catalytic system match the frontier orbitals of ORR/OER reaction intermediates. In short, our method predicts the ORR/OER catalytic efficiencies of novel catalysts via a single-atom/2D-substrate design strategy.
Efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional electrocatalysts have been pursued for decades. Meanwhile, single metal atoms embedded in a two-dimensional material substrate (2D-substrate) have emerged as an outstanding catalyst. Herein, we report on computational ORR/OER efficiencies of a series of single atom catalyst systems, with a nitrogen-doped boron phosphide monolayer (N3-BP) as the 2D-substrate, and with Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rh, Pd, Ir, and Pt as the single-atom subject (M). In brief, our density functional theory results show that the overpotentials for ORR/OER are low for CoN3-BP, NiN3-BP, and PtN3-BP, with {ηORR; ηOER} of {0.36; 0.42 V}, {0.29; 0.44 V}, and {0.32; 0.25 V}, respectively. The relevant attributes such as the chemical stability of the 2D-substrate in the ORR/OER environments, immobilization of the single-atom subject on the 2D-substrate, and mechanisms of the ORR/OER activity and the catalyst recovery on the MN3-BP catalysts were carefully examined. The key to the comparative study is how the electronic states of the reaction center near the Fermi level of the catalytic system match the frontier orbitals of ORR/OER reaction intermediates. In short, our method predicts the ORR/OER catalytic efficiencies of novel catalysts via a single-atom/2D-substrate design strategy.
Efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional electrocatalysts have been pursued for decades. Meanwhile, single metal atoms embedded in a two-dimensional material substrate (2D-substrate) have emerged as an outstanding catalyst. Herein, we report on computational ORR/OER efficiencies of a series of single atom catalyst systems, with a nitrogen-doped boron phosphide monolayer (N₃-BP) as the 2D-substrate, and with Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rh, Pd, Ir, and Pt as the single-atom subject (M). In brief, our density functional theory results show that the overpotentials for ORR/OER are low for CoN₃-BP, NiN₃-BP, and PtN₃-BP, with {ηᴼᴿᴿ; ηᴼᴱᴿ} of {0.36; 0.42 V}, {0.29; 0.44 V}, and {0.32; 0.25 V}, respectively. The relevant attributes such as the chemical stability of the 2D-substrate in the ORR/OER environments, immobilization of the single-atom subject on the 2D-substrate, and mechanisms of the ORR/OER activity and the catalyst recovery on the MN₃-BP catalysts were carefully examined. The key to the comparative study is how the electronic states of the reaction center near the Fermi level of the catalytic system match the frontier orbitals of ORR/OER reaction intermediates. In short, our method predicts the ORR/OER catalytic efficiencies of novel catalysts via a single-atom/2D-substrate design strategy.
Author Chen, Zhiguo
Fan, Xiaoli
Lau, Woonming
Liu, Xinyi
Chen, Fengbo
Zeng, Hanghang
AuthorAffiliation Northwestern Polytechnical University
State Key Laboratory of Solidification Processing, Centre of Advanced Lubrication and Seal Materials, School of Material Science and Engineering
Center for Green Innovation, School of Mathematics and Physics
Queen Mary University of London Engineering School
AuthorAffiliation_xml – name: Queen Mary University of London Engineering School
– name: Center for Green Innovation, School of Mathematics and Physics
– name: State Key Laboratory of Solidification Processing, Centre of Advanced Lubrication and Seal Materials, School of Material Science and Engineering
– name: Northwestern Polytechnical University
Author_xml – sequence: 1
  givenname: Hanghang
  surname: Zeng
  fullname: Zeng, Hanghang
  organization: State Key Laboratory of Solidification Processing, Centre of Advanced Lubrication and Seal Materials, School of Material Science and Engineering
– sequence: 2
  givenname: Xinyi
  surname: Liu
  fullname: Liu, Xinyi
  organization: Northwestern Polytechnical University
– sequence: 3
  givenname: Fengbo
  surname: Chen
  fullname: Chen, Fengbo
– sequence: 4
  givenname: Zhiguo
  surname: Chen
  fullname: Chen, Zhiguo
  organization: State Key Laboratory of Solidification Processing, Centre of Advanced Lubrication and Seal Materials, School of Material Science and Engineering
– sequence: 5
  givenname: Xiaoli
  orcidid: 0000-0002-5291-0706
  surname: Fan
  fullname: Fan, Xiaoli
  email: xlfan@nwpu.edu.cn
  organization: State Key Laboratory of Solidification Processing, Centre of Advanced Lubrication and Seal Materials, School of Material Science and Engineering
– sequence: 6
  givenname: Woonming
  surname: Lau
  fullname: Lau, Woonming
  email: leolau@ustb.edu.cn
  organization: Center for Green Innovation, School of Mathematics and Physics
BookMark eNqFkc1rGzEQxUVJofnotWcdS2FdzUqb3e3NSZ20kMTBzX2Z1Y4SBVlyJZnG_30UHHoohB5GI4bfe4z0jtiBD54Y-wRiBqKGr6gTru1MaJBN375jh9ArVXV1Ux_8vSv1gR2l9CjEqaxFc8iefll_74jPc1gnHjxHfmNzDPfkq-9hQxM_C7GMbx9C2jzYifh18MHhjuI3Puc39IffxrC2qdjwM2u2XmcbPDq-cKSLkcaMbpcyNyHy5WrF0U98uVidsPcGXaKPr_2Y3V0s7s5_VFfLy5_n86sKpRK5Gnsz6q7VUtXjZCRhJ0cQ5UDTaSCjAWgcjSaERnRT30yi4CNoXQpaecw-7203MfzeUspD2VWTc-gpbNNQN62SEhpQ_0dV05_WLXRQULVHdQwpRTKDthlfHp4jWjeAGF4iGfaRDK-RFNnsH9km2jXG3duCL3tBmQ-PYRvLx6a34GdkHKFA
CitedBy_id crossref_primary_10_1039_D1TC00668A
crossref_primary_10_1016_j_est_2024_110815
crossref_primary_10_1002_adma_202408139
crossref_primary_10_1016_j_mcat_2022_112412
crossref_primary_10_3389_fchem_2023_1172146
crossref_primary_10_1002_pssb_202400361
crossref_primary_10_1021_acs_energyfuels_4c01378
crossref_primary_10_1149_2162_8777_ad709f
crossref_primary_10_1007_s12274_021_3680_9
crossref_primary_10_3390_ijms24043713
crossref_primary_10_1039_D2TC04680F
crossref_primary_10_1021_acsaem_1c04036
crossref_primary_10_1016_j_mtener_2022_101026
crossref_primary_10_1039_D1NR02883A
crossref_primary_10_1016_j_surfin_2022_102270
crossref_primary_10_1039_D3CP00223C
crossref_primary_10_1016_j_ijhydene_2024_08_259
crossref_primary_10_1021_acscatal_3c01584
crossref_primary_10_1039_D4NJ05017G
crossref_primary_10_1021_acsami_3c02232
crossref_primary_10_1039_D1TA07349D
crossref_primary_10_1088_2515_7639_ac1ab7
crossref_primary_10_1016_j_colsurfa_2023_133093
crossref_primary_10_1039_D1RA05677H
crossref_primary_10_1002_adma_202303243
crossref_primary_10_1016_j_jelechem_2022_116731
crossref_primary_10_1016_j_jallcom_2023_172484
crossref_primary_10_1016_j_mcat_2024_113921
crossref_primary_10_1021_acs_energyfuels_2c00485
crossref_primary_10_1039_D3CY00708A
crossref_primary_10_1016_j_apsusc_2024_159445
crossref_primary_10_1016_j_jcat_2022_10_011
crossref_primary_10_1002_cssc_202301779
crossref_primary_10_1016_j_chphma_2022_04_002
crossref_primary_10_1002_cctc_202200134
crossref_primary_10_1016_j_jcis_2022_07_158
crossref_primary_10_1039_D1NR02235K
crossref_primary_10_1039_D2TA02642B
crossref_primary_10_1016_j_chphma_2022_10_001
crossref_primary_10_1016_j_cjche_2022_03_007
crossref_primary_10_1039_D1NR02251B
crossref_primary_10_1016_j_comptc_2025_115098
crossref_primary_10_1039_D1TA06913F
crossref_primary_10_1016_j_surfin_2024_104070
crossref_primary_10_1016_j_jcis_2024_09_190
crossref_primary_10_1039_D2DT01111E
crossref_primary_10_1016_j_apsusc_2024_161335
crossref_primary_10_1021_acs_energyfuels_2c04272
crossref_primary_10_1038_s41929_023_01106_z
crossref_primary_10_3390_catal12111387
crossref_primary_10_1016_j_cclet_2023_109423
crossref_primary_10_2139_ssrn_4197809
crossref_primary_10_1021_acs_jpcc_3c03392
crossref_primary_10_1016_j_diamond_2022_108954
crossref_primary_10_1021_acsmaterialslett_4c00961
crossref_primary_10_1088_1361_6528_acc409
crossref_primary_10_1039_D2TC03445J
crossref_primary_10_1021_acs_langmuir_4c04034
crossref_primary_10_1016_j_apsusc_2021_152272
crossref_primary_10_1016_j_surfin_2022_102232
crossref_primary_10_1039_D3TA00071K
crossref_primary_10_1016_j_commatsci_2023_112634
crossref_primary_10_1007_s12274_023_5640_z
crossref_primary_10_1016_j_mcat_2024_114517
crossref_primary_10_1039_D2CP02209E
crossref_primary_10_3390_molecules29235768
crossref_primary_10_1016_j_fuel_2022_126213
crossref_primary_10_2139_ssrn_4143248
crossref_primary_10_1039_D2CP00672C
crossref_primary_10_1002_cctc_202101807
crossref_primary_10_1016_j_ceramint_2022_09_035
crossref_primary_10_1002_slct_202304408
crossref_primary_10_1016_j_apsusc_2023_159196
crossref_primary_10_3390_ma15175837
crossref_primary_10_3390_molecules27051528
crossref_primary_10_1016_j_mcat_2025_114927
crossref_primary_10_1007_s11581_025_06074_x
crossref_primary_10_1021_acs_jpcc_3c07527
crossref_primary_10_1039_D3NR01501G
crossref_primary_10_1021_acs_jpcc_3c05753
crossref_primary_10_1002_asia_202300933
crossref_primary_10_1142_S1793292021500387
crossref_primary_10_1016_j_jcis_2021_07_087
crossref_primary_10_1016_j_matchar_2023_113407
crossref_primary_10_1039_D2QI01047J
crossref_primary_10_1002_smll_202308416
crossref_primary_10_1016_j_ijhydene_2024_08_026
crossref_primary_10_1021_acsomega_2c01385
crossref_primary_10_1021_acs_jpcc_3c03997
crossref_primary_10_1021_acsami_1c22309
crossref_primary_10_2139_ssrn_4005060
crossref_primary_10_1002_smll_202105680
crossref_primary_10_1016_j_ijhydene_2022_09_145
crossref_primary_10_1016_j_jmst_2024_01_087
crossref_primary_10_1016_j_physb_2023_414822
crossref_primary_10_1016_j_jpowsour_2022_232613
crossref_primary_10_1016_j_jcis_2021_09_045
crossref_primary_10_1039_D3TA07239H
crossref_primary_10_1016_j_apsusc_2022_153171
crossref_primary_10_1016_j_apsusc_2022_153574
crossref_primary_10_1016_j_mcat_2024_114401
crossref_primary_10_1016_j_ijhydene_2022_05_101
crossref_primary_10_1016_j_mcat_2023_112967
crossref_primary_10_1016_j_cclet_2022_107812
crossref_primary_10_1039_D1CY00304F
crossref_primary_10_1039_D1EE03614A
crossref_primary_10_1021_acsami_4c16119
crossref_primary_10_1016_j_jcis_2023_10_115
crossref_primary_10_1016_j_mcat_2021_111955
crossref_primary_10_1016_j_apmate_2022_01_004
crossref_primary_10_1016_j_ijhydene_2024_01_278
crossref_primary_10_1016_j_diamond_2023_110603
crossref_primary_10_1088_1361_6528_ac9abd
Cites_doi 10.1021/jz2016507
10.1038/nchem.1069
10.1039/c9ta08616a
10.1038/nchem.367
10.1021/jacs.9b09352
10.1039/c8ta09722d
10.1103/physrevb.80.155453
10.1021/acsami.8b09024
10.1038/s41929-018-0063-z
10.1016/j.commatsci.2019.109201
10.1016/j.nanoen.2016.08.041
10.1103/physrevb.50.17953
10.1038/ncomms15938
10.1021/nn5073495
10.1016/0927-0256(96)00008-0
10.1002/aenm.201500245
10.1039/c8nr09300h
10.1002/chem.201702850
10.1016/j.nantod.2016.09.001
10.1016/j.apsusc.2018.06.298
10.1021/acsami.9b13580
10.1002/adfm.202001097
10.1021/acsnano.7b02148
10.1103/physrevlett.108.206802
10.1002/adma.202002177
10.1016/j.carbon.2014.12.048
10.1021/jacs.6b05398
10.1063/1.4906998
10.1126/science.1170377
10.1016/j.nanoen.2015.11.027
10.1063/1.4964763
10.1039/c4ta05257a
10.1021/la051272o
10.1021/acs.cgd.5b01525
10.1039/d0nh00088d
10.1021/acs.jpcc.6b10334
10.1063/1.4865107
10.1039/c6ta09264k
10.1016/j.carbon.2017.12.121
10.1021/acsami.9b04217
10.1038/nmat1752
10.1103/physrevb.83.144115
10.1016/j.electacta.2013.03.194
10.1021/acs.jpcc.6b02097
10.1039/c5cp00414d
10.1002/jcc.20495
10.1063/1.469654
10.1002/cctc.201000397
10.1103/physrevb.46.6671
10.1039/c6cs00328a
10.1039/c8nr07106c
10.1021/ja500432h
10.1002/aenm.201903181
10.1039/c9ta12838g
10.1103/physrevb.54.11169
10.1039/d0cp00224k
10.1038/s41929-017-0008-y
10.1016/j.electacta.2010.02.056
10.1016/j.jpowsour.2018.07.125
10.1021/acs.nanolett.6b04324
10.1016/j.ijhydene.2003.09.007
10.1039/c9ta05016g
10.1038/nchem.2226
10.1039/c9ta08297b
10.1038/nmat1840
10.1002/aenm.201700544
10.1021/acsami.7b02346
10.1039/c3ra47021k
10.1002/adma.201900592
ContentType Journal Article
Copyright 2020 American Chemical Society
Copyright_xml – notice: 2020 American Chemical Society
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1021/acsami.0c13597
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 52559
ExternalDocumentID 10_1021_acsami_0c13597
b075095333
GroupedDBID -
23M
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
7X8
7S9
L.6
ID FETCH-LOGICAL-a340t-b9fbc87c342bdf3ea83b1083baf8c1efc11ebbfcea1508d95d0c87b1ccb1c173
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 15:53:32 EDT 2025
Fri Jul 11 03:40:32 EDT 2025
Tue Jul 01 02:36:33 EDT 2025
Thu Apr 24 22:59:55 EDT 2025
Fri Nov 27 07:03:53 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 47
Keywords boron phosphide
coordination environment
single-atom catalyst
first-principles
bifunctional electrocatalyst
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a340t-b9fbc87c342bdf3ea83b1083baf8c1efc11ebbfcea1508d95d0c87b1ccb1c173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5291-0706
PQID 2459627181
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2574331514
proquest_miscellaneous_2459627181
crossref_citationtrail_10_1021_acsami_0c13597
crossref_primary_10_1021_acsami_0c13597
acs_journals_10_1021_acsami_0c13597
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-25
PublicationDateYYYYMMDD 2020-11-25
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-25
  day: 25
PublicationDecade 2020
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref11/cit11
  doi: 10.1021/jz2016507
– ident: ref29/cit29
  doi: 10.1038/nchem.1069
– ident: ref24/cit24
  doi: 10.1039/c9ta08616a
– ident: ref25/cit25
  doi: 10.1038/nchem.367
– ident: ref36/cit36
  doi: 10.1021/jacs.9b09352
– ident: ref20/cit20
  doi: 10.1039/c8ta09722d
– ident: ref38/cit38
  doi: 10.1103/physrevb.80.155453
– ident: ref7/cit7
  doi: 10.1021/acsami.8b09024
– ident: ref23/cit23
  doi: 10.1038/s41929-018-0063-z
– ident: ref41/cit41
  doi: 10.1016/j.commatsci.2019.109201
– ident: ref44/cit44
  doi: 10.1016/j.nanoen.2016.08.041
– ident: ref48/cit48
  doi: 10.1103/physrevb.50.17953
– ident: ref64/cit64
  doi: 10.1038/ncomms15938
– ident: ref59/cit59
  doi: 10.1021/nn5073495
– ident: ref46/cit46
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref14/cit14
  doi: 10.1002/aenm.201500245
– ident: ref21/cit21
  doi: 10.1039/c8nr09300h
– ident: ref53/cit53
  doi: 10.1002/chem.201702850
– ident: ref12/cit12
  doi: 10.1016/j.nantod.2016.09.001
– ident: ref4/cit4
  doi: 10.1016/j.apsusc.2018.06.298
– ident: ref17/cit17
  doi: 10.1021/acsami.9b13580
– ident: ref60/cit60
  doi: 10.1002/adfm.202001097
– ident: ref63/cit63
  doi: 10.1021/acsnano.7b02148
– ident: ref62/cit62
  doi: 10.1103/physrevlett.108.206802
– ident: ref34/cit34
  doi: 10.1002/adma.202002177
– ident: ref66/cit66
  doi: 10.1016/j.carbon.2014.12.048
– ident: ref30/cit30
  doi: 10.1021/jacs.6b05398
– ident: ref39/cit39
  doi: 10.1063/1.4906998
– ident: ref9/cit9
  doi: 10.1126/science.1170377
– ident: ref13/cit13
  doi: 10.1016/j.nanoen.2015.11.027
– ident: ref57/cit57
  doi: 10.1063/1.4964763
– ident: ref67/cit67
  doi: 10.1039/c4ta05257a
– ident: ref8/cit8
  doi: 10.1021/la051272o
– ident: ref40/cit40
  doi: 10.1021/acs.cgd.5b01525
– ident: ref32/cit32
  doi: 10.1039/d0nh00088d
– ident: ref42/cit42
  doi: 10.1021/acs.jpcc.6b10334
– ident: ref56/cit56
  doi: 10.1063/1.4865107
– ident: ref37/cit37
  doi: 10.1039/c6ta09264k
– ident: ref22/cit22
  doi: 10.1016/j.carbon.2017.12.121
– ident: ref16/cit16
  doi: 10.1021/acsami.9b04217
– ident: ref26/cit26
  doi: 10.1038/nmat1752
– ident: ref61/cit61
  doi: 10.1103/physrevb.83.144115
– ident: ref1/cit1
  doi: 10.1016/j.electacta.2013.03.194
– ident: ref69/cit69
  doi: 10.1021/acs.jpcc.6b02097
– ident: ref58/cit58
  doi: 10.1039/c5cp00414d
– ident: ref50/cit50
  doi: 10.1002/jcc.20495
– ident: ref51/cit51
  doi: 10.1063/1.469654
– ident: ref55/cit55
  doi: 10.1002/cctc.201000397
– ident: ref49/cit49
  doi: 10.1103/physrevb.46.6671
– ident: ref54/cit54
  doi: 10.1039/c6cs00328a
– ident: ref15/cit15
  doi: 10.1039/c8nr07106c
– ident: ref28/cit28
  doi: 10.1021/ja500432h
– ident: ref33/cit33
  doi: 10.1002/aenm.201903181
– ident: ref35/cit35
  doi: 10.1039/c9ta12838g
– ident: ref47/cit47
  doi: 10.1103/physrevb.54.11169
– ident: ref43/cit43
  doi: 10.1039/d0cp00224k
– ident: ref18/cit18
  doi: 10.1038/s41929-017-0008-y
– ident: ref65/cit65
  doi: 10.1016/j.electacta.2010.02.056
– ident: ref3/cit3
  doi: 10.1016/j.jpowsour.2018.07.125
– ident: ref68/cit68
  doi: 10.1021/acs.nanolett.6b04324
– ident: ref10/cit10
  doi: 10.1016/j.ijhydene.2003.09.007
– ident: ref45/cit45
  doi: 10.1039/c9ta05016g
– ident: ref31/cit31
  doi: 10.1038/nchem.2226
– ident: ref52/cit52
  doi: 10.1039/c9ta08297b
– ident: ref27/cit27
  doi: 10.1038/nmat1840
– ident: ref5/cit5
  doi: 10.1002/aenm.201700544
– ident: ref6/cit6
  doi: 10.1021/acsami.7b02346
– ident: ref2/cit2
  doi: 10.1039/c3ra47021k
– ident: ref19/cit19
  doi: 10.1002/adma.201900592
SSID ssj0063205
Score 2.61085
Snippet Efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional electrocatalysts have been pursued for decades. Meanwhile, single...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 52549
SubjectTerms boron
catalysts
comparative study
density functional theory
electrochemistry
Energy, Environmental, and Catalysis Applications
oxygen production
phosphides
Title Single Atoms on a Nitrogen-Doped Boron Phosphide Monolayer: A New Promising Bifunctional Electrocatalyst for ORR and OER
URI http://dx.doi.org/10.1021/acsami.0c13597
https://www.proquest.com/docview/2459627181
https://www.proquest.com/docview/2574331514
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JbtRAEG1BuMAh7CJhUSGQOHVwL14mt0mYKEIiiSZBys3q6kUZkdijsUcKfH2qbQ8QogAHy5eyZVfX8qqXV4y9R6VDqjJLIzDKuEYd27xIw31wVmJWZJjFw8lfDrL9r_rzaXr6a77jzxV8KT4a28RWOIkVisDvXXZPZuTBEQTtHq9ibqZkt1mRKnLNC8pYK3rGG8_HJGSb60noegzuEsvew57lqOn4CON-km9byxa37I-bbI3__OZHbH1AlzDuzeExu-OrJ-zBb5yDT9nlMd3OPYzb-qKBugIDB7N2UZMh8U_13DvYiaQGcHRWN_OzmfNAbk_1L0HzbRgDBUU4WtRkHfQa2JnFvNhPJ8Kk76jTTQh9b1ogOAyH0ymYysHhZPqMnexNTnb3-dB-gRulk5bjKKAtcqu0RBeUN4VCQYgNTSis8MEK4RGD9SZyyrtR6hISR2EtXSJXz9laVVf-BQOXhoAyBInpSAeHSCiB6rw0EVblCeYb7B1prBy8pym7hXEpyl6N5aDGDcZXg1bagcA89tE4v1X-w0_5eU_dcavk25UNlKS_uGRiKl8vm1LqrjsRwaC_yKR5PHZGyHPzv_7jJbsvY9EuBJfpK7bWLpb-NSGbFt90Rn0FHOv1uw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEF6V8gA8cFeUcxBIPLn1Hj7CW1pSBWjTKA1S3yzPHmpEsaPYkYBfz6yPQkFF8GBZssar9ex45ps9vmHsNUrlIhlrGoFBHChUvsyLyAPrjBYYpzHG_nDy0SQef1IfTqPTDbbbn4WhTlTUUtUs4v9kF-C79MxXxAk1l4SBr7HrhESEN-nh_knvemMpmj2LlJirIKXA1bM0_vG-j0W6uhyLLrviJr4c3GHTi54120o-76xr3NHffyNt_I-u32W3O6wJw9Y47rENW9xnt35hIHzAvp7Q7dzCsC6_VFAWkMNkUa9KMqvgXbm0BvY8xQFMz8pqebYwFsgJUDZMQP0tDIFcJExXJdkKNQN7Cx8l28lFGLX1dZrpoW9VDQSO4Xg2g7wwcDyaPWTzg9F8fxx0xRiCXKqwDnDgUKeJlkqgcdLmqURO-A1zl2punebcIjptc88wbwaRCUkcudZ08URusc2iLOwjBiZyDoVzAqOBcgaRMANlfVHItUxCTLbZK9JY1v1LVdYskwuetWrMOjVus6Afu0x3dOa-qsb5lfJvLuSXLZHHlZIve1PISH9-ASUvbLmuMqGaWkUEiv4iEyX-EBrh0Mf_9B0v2I3x_OgwO3w_-fiE3RQ-nec8ENFTtlmv1vYZYZ4anzd2_gPY6f4c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEF5BkRA8cCPKOQgknrb1Hj7CW9omKlcapUHqm-XZQ40odhQ7EvDrmbWdioKK4MGyZI2t9ezszDc7OzOMvUalfawSQzMwSLhGHdq8yII7b43EJEswCcnJnybJ4Wf9_iQ-6fO4Qy4MDaKmL9VtED-s6qX1fYUBsUvPQ1ecyAhFOPgquxZidkGsh_vHG_WbKNmeWyTnXPOMjNemUuMf7wd7ZOqL9uiiOm5tzPg2m5-Prj1a8mVn3eCO-fFb4cb_HP4ddqvHnDDshOQuu-LKe-zmL5UI77Nvx3Q7czBsqq81VCUUMFk0q4rEix9US2dhL5Q6gOlpVS9PF9YBKQPyigmwv4UhkKqE6aoimaHPwN4iWMtukxFGXZ-ddpvoe90AgWQ4ms2gKC0cjWYP2Hw8mu8f8r4pAy-UjhqOA48mS43SEq1XrsgUCsJxWPjMCOeNEA7RG1eESvN2ENuIyFEYQ5dI1UO2VVale8TAxt6j9F5iPNDeIhJ2IO8vjoRRaYTpNntFHMv7NVXnbbhcirxjY96zcZvxzfzlpi9rHrprnF1K_-acftkV9LiU8uVGHHLiXwikFKWr1nUudduziMDRX2jiNCSjER59_E__8YJdnx6M84_vJh-esBsyePVCcBk_ZVvNau2eEfRp8Hkr6j8BCAUArg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Atoms+on+a+Nitrogen-Doped+Boron+Phosphide+Monolayer%3A+A+New+Promising+Bifunctional+Electrocatalyst+for+ORR+and+OER&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Zeng%2C+Hanghang&rft.au=Liu%2C+Xinyi&rft.au=Chen%2C+Fengbo&rft.au=Chen%2C+Zhiguo&rft.date=2020-11-25&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=12&rft.issue=47&rft.spage=52549&rft_id=info:doi/10.1021%2Facsami.0c13597&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon