Single Atoms on a Nitrogen-Doped Boron Phosphide Monolayer: A New Promising Bifunctional Electrocatalyst for ORR and OER
Efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional electrocatalysts have been pursued for decades. Meanwhile, single metal atoms embedded in a two-dimensional material substrate (2D-substrate) have emerged as an outstanding catalyst. Herein, we report on compu...
Saved in:
Published in | ACS applied materials & interfaces Vol. 12; no. 47; pp. 52549 - 52559 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
25.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional electrocatalysts have been pursued for decades. Meanwhile, single metal atoms embedded in a two-dimensional material substrate (2D-substrate) have emerged as an outstanding catalyst. Herein, we report on computational ORR/OER efficiencies of a series of single atom catalyst systems, with a nitrogen-doped boron phosphide monolayer (N3-BP) as the 2D-substrate, and with Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rh, Pd, Ir, and Pt as the single-atom subject (M). In brief, our density functional theory results show that the overpotentials for ORR/OER are low for CoN3-BP, NiN3-BP, and PtN3-BP, with {ηORR; ηOER} of {0.36; 0.42 V}, {0.29; 0.44 V}, and {0.32; 0.25 V}, respectively. The relevant attributes such as the chemical stability of the 2D-substrate in the ORR/OER environments, immobilization of the single-atom subject on the 2D-substrate, and mechanisms of the ORR/OER activity and the catalyst recovery on the MN3-BP catalysts were carefully examined. The key to the comparative study is how the electronic states of the reaction center near the Fermi level of the catalytic system match the frontier orbitals of ORR/OER reaction intermediates. In short, our method predicts the ORR/OER catalytic efficiencies of novel catalysts via a single-atom/2D-substrate design strategy. |
---|---|
AbstractList | Efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional electrocatalysts have been pursued for decades. Meanwhile, single metal atoms embedded in a two-dimensional material substrate (2D-substrate) have emerged as an outstanding catalyst. Herein, we report on computational ORR/OER efficiencies of a series of single atom catalyst systems, with a nitrogen-doped boron phosphide monolayer (N3-BP) as the 2D-substrate, and with Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rh, Pd, Ir, and Pt as the single-atom subject (M). In brief, our density functional theory results show that the overpotentials for ORR/OER are low for CoN3-BP, NiN3-BP, and PtN3-BP, with {ηORR; ηOER} of {0.36; 0.42 V}, {0.29; 0.44 V}, and {0.32; 0.25 V}, respectively. The relevant attributes such as the chemical stability of the 2D-substrate in the ORR/OER environments, immobilization of the single-atom subject on the 2D-substrate, and mechanisms of the ORR/OER activity and the catalyst recovery on the MN3-BP catalysts were carefully examined. The key to the comparative study is how the electronic states of the reaction center near the Fermi level of the catalytic system match the frontier orbitals of ORR/OER reaction intermediates. In short, our method predicts the ORR/OER catalytic efficiencies of novel catalysts via a single-atom/2D-substrate design strategy.Efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional electrocatalysts have been pursued for decades. Meanwhile, single metal atoms embedded in a two-dimensional material substrate (2D-substrate) have emerged as an outstanding catalyst. Herein, we report on computational ORR/OER efficiencies of a series of single atom catalyst systems, with a nitrogen-doped boron phosphide monolayer (N3-BP) as the 2D-substrate, and with Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rh, Pd, Ir, and Pt as the single-atom subject (M). In brief, our density functional theory results show that the overpotentials for ORR/OER are low for CoN3-BP, NiN3-BP, and PtN3-BP, with {ηORR; ηOER} of {0.36; 0.42 V}, {0.29; 0.44 V}, and {0.32; 0.25 V}, respectively. The relevant attributes such as the chemical stability of the 2D-substrate in the ORR/OER environments, immobilization of the single-atom subject on the 2D-substrate, and mechanisms of the ORR/OER activity and the catalyst recovery on the MN3-BP catalysts were carefully examined. The key to the comparative study is how the electronic states of the reaction center near the Fermi level of the catalytic system match the frontier orbitals of ORR/OER reaction intermediates. In short, our method predicts the ORR/OER catalytic efficiencies of novel catalysts via a single-atom/2D-substrate design strategy. Efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional electrocatalysts have been pursued for decades. Meanwhile, single metal atoms embedded in a two-dimensional material substrate (2D-substrate) have emerged as an outstanding catalyst. Herein, we report on computational ORR/OER efficiencies of a series of single atom catalyst systems, with a nitrogen-doped boron phosphide monolayer (N3-BP) as the 2D-substrate, and with Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rh, Pd, Ir, and Pt as the single-atom subject (M). In brief, our density functional theory results show that the overpotentials for ORR/OER are low for CoN3-BP, NiN3-BP, and PtN3-BP, with {ηORR; ηOER} of {0.36; 0.42 V}, {0.29; 0.44 V}, and {0.32; 0.25 V}, respectively. The relevant attributes such as the chemical stability of the 2D-substrate in the ORR/OER environments, immobilization of the single-atom subject on the 2D-substrate, and mechanisms of the ORR/OER activity and the catalyst recovery on the MN3-BP catalysts were carefully examined. The key to the comparative study is how the electronic states of the reaction center near the Fermi level of the catalytic system match the frontier orbitals of ORR/OER reaction intermediates. In short, our method predicts the ORR/OER catalytic efficiencies of novel catalysts via a single-atom/2D-substrate design strategy. Efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional electrocatalysts have been pursued for decades. Meanwhile, single metal atoms embedded in a two-dimensional material substrate (2D-substrate) have emerged as an outstanding catalyst. Herein, we report on computational ORR/OER efficiencies of a series of single atom catalyst systems, with a nitrogen-doped boron phosphide monolayer (N₃-BP) as the 2D-substrate, and with Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rh, Pd, Ir, and Pt as the single-atom subject (M). In brief, our density functional theory results show that the overpotentials for ORR/OER are low for CoN₃-BP, NiN₃-BP, and PtN₃-BP, with {ηᴼᴿᴿ; ηᴼᴱᴿ} of {0.36; 0.42 V}, {0.29; 0.44 V}, and {0.32; 0.25 V}, respectively. The relevant attributes such as the chemical stability of the 2D-substrate in the ORR/OER environments, immobilization of the single-atom subject on the 2D-substrate, and mechanisms of the ORR/OER activity and the catalyst recovery on the MN₃-BP catalysts were carefully examined. The key to the comparative study is how the electronic states of the reaction center near the Fermi level of the catalytic system match the frontier orbitals of ORR/OER reaction intermediates. In short, our method predicts the ORR/OER catalytic efficiencies of novel catalysts via a single-atom/2D-substrate design strategy. |
Author | Chen, Zhiguo Fan, Xiaoli Lau, Woonming Liu, Xinyi Chen, Fengbo Zeng, Hanghang |
AuthorAffiliation | Northwestern Polytechnical University State Key Laboratory of Solidification Processing, Centre of Advanced Lubrication and Seal Materials, School of Material Science and Engineering Center for Green Innovation, School of Mathematics and Physics Queen Mary University of London Engineering School |
AuthorAffiliation_xml | – name: Queen Mary University of London Engineering School – name: Center for Green Innovation, School of Mathematics and Physics – name: State Key Laboratory of Solidification Processing, Centre of Advanced Lubrication and Seal Materials, School of Material Science and Engineering – name: Northwestern Polytechnical University |
Author_xml | – sequence: 1 givenname: Hanghang surname: Zeng fullname: Zeng, Hanghang organization: State Key Laboratory of Solidification Processing, Centre of Advanced Lubrication and Seal Materials, School of Material Science and Engineering – sequence: 2 givenname: Xinyi surname: Liu fullname: Liu, Xinyi organization: Northwestern Polytechnical University – sequence: 3 givenname: Fengbo surname: Chen fullname: Chen, Fengbo – sequence: 4 givenname: Zhiguo surname: Chen fullname: Chen, Zhiguo organization: State Key Laboratory of Solidification Processing, Centre of Advanced Lubrication and Seal Materials, School of Material Science and Engineering – sequence: 5 givenname: Xiaoli orcidid: 0000-0002-5291-0706 surname: Fan fullname: Fan, Xiaoli email: xlfan@nwpu.edu.cn organization: State Key Laboratory of Solidification Processing, Centre of Advanced Lubrication and Seal Materials, School of Material Science and Engineering – sequence: 6 givenname: Woonming surname: Lau fullname: Lau, Woonming email: leolau@ustb.edu.cn organization: Center for Green Innovation, School of Mathematics and Physics |
BookMark | eNqFkc1rGzEQxUVJofnotWcdS2FdzUqb3e3NSZ20kMTBzX2Z1Y4SBVlyJZnG_30UHHoohB5GI4bfe4z0jtiBD54Y-wRiBqKGr6gTru1MaJBN375jh9ArVXV1Ux_8vSv1gR2l9CjEqaxFc8iefll_74jPc1gnHjxHfmNzDPfkq-9hQxM_C7GMbx9C2jzYifh18MHhjuI3Puc39IffxrC2qdjwM2u2XmcbPDq-cKSLkcaMbpcyNyHy5WrF0U98uVidsPcGXaKPr_2Y3V0s7s5_VFfLy5_n86sKpRK5Gnsz6q7VUtXjZCRhJ0cQ5UDTaSCjAWgcjSaERnRT30yi4CNoXQpaecw-7203MfzeUspD2VWTc-gpbNNQN62SEhpQ_0dV05_WLXRQULVHdQwpRTKDthlfHp4jWjeAGF4iGfaRDK-RFNnsH9km2jXG3duCL3tBmQ-PYRvLx6a34GdkHKFA |
CitedBy_id | crossref_primary_10_1039_D1TC00668A crossref_primary_10_1016_j_est_2024_110815 crossref_primary_10_1002_adma_202408139 crossref_primary_10_1016_j_mcat_2022_112412 crossref_primary_10_3389_fchem_2023_1172146 crossref_primary_10_1002_pssb_202400361 crossref_primary_10_1021_acs_energyfuels_4c01378 crossref_primary_10_1149_2162_8777_ad709f crossref_primary_10_1007_s12274_021_3680_9 crossref_primary_10_3390_ijms24043713 crossref_primary_10_1039_D2TC04680F crossref_primary_10_1021_acsaem_1c04036 crossref_primary_10_1016_j_mtener_2022_101026 crossref_primary_10_1039_D1NR02883A crossref_primary_10_1016_j_surfin_2022_102270 crossref_primary_10_1039_D3CP00223C crossref_primary_10_1016_j_ijhydene_2024_08_259 crossref_primary_10_1021_acscatal_3c01584 crossref_primary_10_1039_D4NJ05017G crossref_primary_10_1021_acsami_3c02232 crossref_primary_10_1039_D1TA07349D crossref_primary_10_1088_2515_7639_ac1ab7 crossref_primary_10_1016_j_colsurfa_2023_133093 crossref_primary_10_1039_D1RA05677H crossref_primary_10_1002_adma_202303243 crossref_primary_10_1016_j_jelechem_2022_116731 crossref_primary_10_1016_j_jallcom_2023_172484 crossref_primary_10_1016_j_mcat_2024_113921 crossref_primary_10_1021_acs_energyfuels_2c00485 crossref_primary_10_1039_D3CY00708A crossref_primary_10_1016_j_apsusc_2024_159445 crossref_primary_10_1016_j_jcat_2022_10_011 crossref_primary_10_1002_cssc_202301779 crossref_primary_10_1016_j_chphma_2022_04_002 crossref_primary_10_1002_cctc_202200134 crossref_primary_10_1016_j_jcis_2022_07_158 crossref_primary_10_1039_D1NR02235K crossref_primary_10_1039_D2TA02642B crossref_primary_10_1016_j_chphma_2022_10_001 crossref_primary_10_1016_j_cjche_2022_03_007 crossref_primary_10_1039_D1NR02251B crossref_primary_10_1016_j_comptc_2025_115098 crossref_primary_10_1039_D1TA06913F crossref_primary_10_1016_j_surfin_2024_104070 crossref_primary_10_1016_j_jcis_2024_09_190 crossref_primary_10_1039_D2DT01111E crossref_primary_10_1016_j_apsusc_2024_161335 crossref_primary_10_1021_acs_energyfuels_2c04272 crossref_primary_10_1038_s41929_023_01106_z crossref_primary_10_3390_catal12111387 crossref_primary_10_1016_j_cclet_2023_109423 crossref_primary_10_2139_ssrn_4197809 crossref_primary_10_1021_acs_jpcc_3c03392 crossref_primary_10_1016_j_diamond_2022_108954 crossref_primary_10_1021_acsmaterialslett_4c00961 crossref_primary_10_1088_1361_6528_acc409 crossref_primary_10_1039_D2TC03445J crossref_primary_10_1021_acs_langmuir_4c04034 crossref_primary_10_1016_j_apsusc_2021_152272 crossref_primary_10_1016_j_surfin_2022_102232 crossref_primary_10_1039_D3TA00071K crossref_primary_10_1016_j_commatsci_2023_112634 crossref_primary_10_1007_s12274_023_5640_z crossref_primary_10_1016_j_mcat_2024_114517 crossref_primary_10_1039_D2CP02209E crossref_primary_10_3390_molecules29235768 crossref_primary_10_1016_j_fuel_2022_126213 crossref_primary_10_2139_ssrn_4143248 crossref_primary_10_1039_D2CP00672C crossref_primary_10_1002_cctc_202101807 crossref_primary_10_1016_j_ceramint_2022_09_035 crossref_primary_10_1002_slct_202304408 crossref_primary_10_1016_j_apsusc_2023_159196 crossref_primary_10_3390_ma15175837 crossref_primary_10_3390_molecules27051528 crossref_primary_10_1016_j_mcat_2025_114927 crossref_primary_10_1007_s11581_025_06074_x crossref_primary_10_1021_acs_jpcc_3c07527 crossref_primary_10_1039_D3NR01501G crossref_primary_10_1021_acs_jpcc_3c05753 crossref_primary_10_1002_asia_202300933 crossref_primary_10_1142_S1793292021500387 crossref_primary_10_1016_j_jcis_2021_07_087 crossref_primary_10_1016_j_matchar_2023_113407 crossref_primary_10_1039_D2QI01047J crossref_primary_10_1002_smll_202308416 crossref_primary_10_1016_j_ijhydene_2024_08_026 crossref_primary_10_1021_acsomega_2c01385 crossref_primary_10_1021_acs_jpcc_3c03997 crossref_primary_10_1021_acsami_1c22309 crossref_primary_10_2139_ssrn_4005060 crossref_primary_10_1002_smll_202105680 crossref_primary_10_1016_j_ijhydene_2022_09_145 crossref_primary_10_1016_j_jmst_2024_01_087 crossref_primary_10_1016_j_physb_2023_414822 crossref_primary_10_1016_j_jpowsour_2022_232613 crossref_primary_10_1016_j_jcis_2021_09_045 crossref_primary_10_1039_D3TA07239H crossref_primary_10_1016_j_apsusc_2022_153171 crossref_primary_10_1016_j_apsusc_2022_153574 crossref_primary_10_1016_j_mcat_2024_114401 crossref_primary_10_1016_j_ijhydene_2022_05_101 crossref_primary_10_1016_j_mcat_2023_112967 crossref_primary_10_1016_j_cclet_2022_107812 crossref_primary_10_1039_D1CY00304F crossref_primary_10_1039_D1EE03614A crossref_primary_10_1021_acsami_4c16119 crossref_primary_10_1016_j_jcis_2023_10_115 crossref_primary_10_1016_j_mcat_2021_111955 crossref_primary_10_1016_j_apmate_2022_01_004 crossref_primary_10_1016_j_ijhydene_2024_01_278 crossref_primary_10_1016_j_diamond_2023_110603 crossref_primary_10_1088_1361_6528_ac9abd |
Cites_doi | 10.1021/jz2016507 10.1038/nchem.1069 10.1039/c9ta08616a 10.1038/nchem.367 10.1021/jacs.9b09352 10.1039/c8ta09722d 10.1103/physrevb.80.155453 10.1021/acsami.8b09024 10.1038/s41929-018-0063-z 10.1016/j.commatsci.2019.109201 10.1016/j.nanoen.2016.08.041 10.1103/physrevb.50.17953 10.1038/ncomms15938 10.1021/nn5073495 10.1016/0927-0256(96)00008-0 10.1002/aenm.201500245 10.1039/c8nr09300h 10.1002/chem.201702850 10.1016/j.nantod.2016.09.001 10.1016/j.apsusc.2018.06.298 10.1021/acsami.9b13580 10.1002/adfm.202001097 10.1021/acsnano.7b02148 10.1103/physrevlett.108.206802 10.1002/adma.202002177 10.1016/j.carbon.2014.12.048 10.1021/jacs.6b05398 10.1063/1.4906998 10.1126/science.1170377 10.1016/j.nanoen.2015.11.027 10.1063/1.4964763 10.1039/c4ta05257a 10.1021/la051272o 10.1021/acs.cgd.5b01525 10.1039/d0nh00088d 10.1021/acs.jpcc.6b10334 10.1063/1.4865107 10.1039/c6ta09264k 10.1016/j.carbon.2017.12.121 10.1021/acsami.9b04217 10.1038/nmat1752 10.1103/physrevb.83.144115 10.1016/j.electacta.2013.03.194 10.1021/acs.jpcc.6b02097 10.1039/c5cp00414d 10.1002/jcc.20495 10.1063/1.469654 10.1002/cctc.201000397 10.1103/physrevb.46.6671 10.1039/c6cs00328a 10.1039/c8nr07106c 10.1021/ja500432h 10.1002/aenm.201903181 10.1039/c9ta12838g 10.1103/physrevb.54.11169 10.1039/d0cp00224k 10.1038/s41929-017-0008-y 10.1016/j.electacta.2010.02.056 10.1016/j.jpowsour.2018.07.125 10.1021/acs.nanolett.6b04324 10.1016/j.ijhydene.2003.09.007 10.1039/c9ta05016g 10.1038/nchem.2226 10.1039/c9ta08297b 10.1038/nmat1840 10.1002/aenm.201700544 10.1021/acsami.7b02346 10.1039/c3ra47021k 10.1002/adma.201900592 |
ContentType | Journal Article |
Copyright | 2020 American
Chemical Society |
Copyright_xml | – notice: 2020 American Chemical Society |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1021/acsami.0c13597 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 52559 |
ExternalDocumentID | 10_1021_acsami_0c13597 b075095333 |
GroupedDBID | - 23M 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a340t-b9fbc87c342bdf3ea83b1083baf8c1efc11ebbfcea1508d95d0c87b1ccb1c173 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 15:53:32 EDT 2025 Fri Jul 11 03:40:32 EDT 2025 Tue Jul 01 02:36:33 EDT 2025 Thu Apr 24 22:59:55 EDT 2025 Fri Nov 27 07:03:53 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Keywords | boron phosphide coordination environment single-atom catalyst first-principles bifunctional electrocatalyst |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a340t-b9fbc87c342bdf3ea83b1083baf8c1efc11ebbfcea1508d95d0c87b1ccb1c173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5291-0706 |
PQID | 2459627181 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2574331514 proquest_miscellaneous_2459627181 crossref_citationtrail_10_1021_acsami_0c13597 crossref_primary_10_1021_acsami_0c13597 acs_journals_10_1021_acsami_0c13597 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-25 |
PublicationDateYYYYMMDD | 2020-11-25 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref11/cit11 doi: 10.1021/jz2016507 – ident: ref29/cit29 doi: 10.1038/nchem.1069 – ident: ref24/cit24 doi: 10.1039/c9ta08616a – ident: ref25/cit25 doi: 10.1038/nchem.367 – ident: ref36/cit36 doi: 10.1021/jacs.9b09352 – ident: ref20/cit20 doi: 10.1039/c8ta09722d – ident: ref38/cit38 doi: 10.1103/physrevb.80.155453 – ident: ref7/cit7 doi: 10.1021/acsami.8b09024 – ident: ref23/cit23 doi: 10.1038/s41929-018-0063-z – ident: ref41/cit41 doi: 10.1016/j.commatsci.2019.109201 – ident: ref44/cit44 doi: 10.1016/j.nanoen.2016.08.041 – ident: ref48/cit48 doi: 10.1103/physrevb.50.17953 – ident: ref64/cit64 doi: 10.1038/ncomms15938 – ident: ref59/cit59 doi: 10.1021/nn5073495 – ident: ref46/cit46 doi: 10.1016/0927-0256(96)00008-0 – ident: ref14/cit14 doi: 10.1002/aenm.201500245 – ident: ref21/cit21 doi: 10.1039/c8nr09300h – ident: ref53/cit53 doi: 10.1002/chem.201702850 – ident: ref12/cit12 doi: 10.1016/j.nantod.2016.09.001 – ident: ref4/cit4 doi: 10.1016/j.apsusc.2018.06.298 – ident: ref17/cit17 doi: 10.1021/acsami.9b13580 – ident: ref60/cit60 doi: 10.1002/adfm.202001097 – ident: ref63/cit63 doi: 10.1021/acsnano.7b02148 – ident: ref62/cit62 doi: 10.1103/physrevlett.108.206802 – ident: ref34/cit34 doi: 10.1002/adma.202002177 – ident: ref66/cit66 doi: 10.1016/j.carbon.2014.12.048 – ident: ref30/cit30 doi: 10.1021/jacs.6b05398 – ident: ref39/cit39 doi: 10.1063/1.4906998 – ident: ref9/cit9 doi: 10.1126/science.1170377 – ident: ref13/cit13 doi: 10.1016/j.nanoen.2015.11.027 – ident: ref57/cit57 doi: 10.1063/1.4964763 – ident: ref67/cit67 doi: 10.1039/c4ta05257a – ident: ref8/cit8 doi: 10.1021/la051272o – ident: ref40/cit40 doi: 10.1021/acs.cgd.5b01525 – ident: ref32/cit32 doi: 10.1039/d0nh00088d – ident: ref42/cit42 doi: 10.1021/acs.jpcc.6b10334 – ident: ref56/cit56 doi: 10.1063/1.4865107 – ident: ref37/cit37 doi: 10.1039/c6ta09264k – ident: ref22/cit22 doi: 10.1016/j.carbon.2017.12.121 – ident: ref16/cit16 doi: 10.1021/acsami.9b04217 – ident: ref26/cit26 doi: 10.1038/nmat1752 – ident: ref61/cit61 doi: 10.1103/physrevb.83.144115 – ident: ref1/cit1 doi: 10.1016/j.electacta.2013.03.194 – ident: ref69/cit69 doi: 10.1021/acs.jpcc.6b02097 – ident: ref58/cit58 doi: 10.1039/c5cp00414d – ident: ref50/cit50 doi: 10.1002/jcc.20495 – ident: ref51/cit51 doi: 10.1063/1.469654 – ident: ref55/cit55 doi: 10.1002/cctc.201000397 – ident: ref49/cit49 doi: 10.1103/physrevb.46.6671 – ident: ref54/cit54 doi: 10.1039/c6cs00328a – ident: ref15/cit15 doi: 10.1039/c8nr07106c – ident: ref28/cit28 doi: 10.1021/ja500432h – ident: ref33/cit33 doi: 10.1002/aenm.201903181 – ident: ref35/cit35 doi: 10.1039/c9ta12838g – ident: ref47/cit47 doi: 10.1103/physrevb.54.11169 – ident: ref43/cit43 doi: 10.1039/d0cp00224k – ident: ref18/cit18 doi: 10.1038/s41929-017-0008-y – ident: ref65/cit65 doi: 10.1016/j.electacta.2010.02.056 – ident: ref3/cit3 doi: 10.1016/j.jpowsour.2018.07.125 – ident: ref68/cit68 doi: 10.1021/acs.nanolett.6b04324 – ident: ref10/cit10 doi: 10.1016/j.ijhydene.2003.09.007 – ident: ref45/cit45 doi: 10.1039/c9ta05016g – ident: ref31/cit31 doi: 10.1038/nchem.2226 – ident: ref52/cit52 doi: 10.1039/c9ta08297b – ident: ref27/cit27 doi: 10.1038/nmat1840 – ident: ref5/cit5 doi: 10.1002/aenm.201700544 – ident: ref6/cit6 doi: 10.1021/acsami.7b02346 – ident: ref2/cit2 doi: 10.1039/c3ra47021k – ident: ref19/cit19 doi: 10.1002/adma.201900592 |
SSID | ssj0063205 |
Score | 2.61085 |
Snippet | Efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional electrocatalysts have been pursued for decades. Meanwhile, single... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 52549 |
SubjectTerms | boron catalysts comparative study density functional theory electrochemistry Energy, Environmental, and Catalysis Applications oxygen production phosphides |
Title | Single Atoms on a Nitrogen-Doped Boron Phosphide Monolayer: A New Promising Bifunctional Electrocatalyst for ORR and OER |
URI | http://dx.doi.org/10.1021/acsami.0c13597 https://www.proquest.com/docview/2459627181 https://www.proquest.com/docview/2574331514 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JbtRAEG1BuMAh7CJhUSGQOHVwL14mt0mYKEIiiSZBys3q6kUZkdijsUcKfH2qbQ8QogAHy5eyZVfX8qqXV4y9R6VDqjJLIzDKuEYd27xIw31wVmJWZJjFw8lfDrL9r_rzaXr6a77jzxV8KT4a28RWOIkVisDvXXZPZuTBEQTtHq9ibqZkt1mRKnLNC8pYK3rGG8_HJGSb60noegzuEsvew57lqOn4CON-km9byxa37I-bbI3__OZHbH1AlzDuzeExu-OrJ-zBb5yDT9nlMd3OPYzb-qKBugIDB7N2UZMh8U_13DvYiaQGcHRWN_OzmfNAbk_1L0HzbRgDBUU4WtRkHfQa2JnFvNhPJ8Kk76jTTQh9b1ogOAyH0ymYysHhZPqMnexNTnb3-dB-gRulk5bjKKAtcqu0RBeUN4VCQYgNTSis8MEK4RGD9SZyyrtR6hISR2EtXSJXz9laVVf-BQOXhoAyBInpSAeHSCiB6rw0EVblCeYb7B1prBy8pym7hXEpyl6N5aDGDcZXg1bagcA89tE4v1X-w0_5eU_dcavk25UNlKS_uGRiKl8vm1LqrjsRwaC_yKR5PHZGyHPzv_7jJbsvY9EuBJfpK7bWLpb-NSGbFt90Rn0FHOv1uw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEF6V8gA8cFeUcxBIPLn1Hj7CW1pSBWjTKA1S3yzPHmpEsaPYkYBfz6yPQkFF8GBZssar9ex45ps9vmHsNUrlIhlrGoFBHChUvsyLyAPrjBYYpzHG_nDy0SQef1IfTqPTDbbbn4WhTlTUUtUs4v9kF-C79MxXxAk1l4SBr7HrhESEN-nh_knvemMpmj2LlJirIKXA1bM0_vG-j0W6uhyLLrviJr4c3GHTi54120o-76xr3NHffyNt_I-u32W3O6wJw9Y47rENW9xnt35hIHzAvp7Q7dzCsC6_VFAWkMNkUa9KMqvgXbm0BvY8xQFMz8pqebYwFsgJUDZMQP0tDIFcJExXJdkKNQN7Cx8l28lFGLX1dZrpoW9VDQSO4Xg2g7wwcDyaPWTzg9F8fxx0xRiCXKqwDnDgUKeJlkqgcdLmqURO-A1zl2punebcIjptc88wbwaRCUkcudZ08URusc2iLOwjBiZyDoVzAqOBcgaRMANlfVHItUxCTLbZK9JY1v1LVdYskwuetWrMOjVus6Afu0x3dOa-qsb5lfJvLuSXLZHHlZIve1PISH9-ASUvbLmuMqGaWkUEiv4iEyX-EBrh0Mf_9B0v2I3x_OgwO3w_-fiE3RQ-nec8ENFTtlmv1vYZYZ4anzd2_gPY6f4c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEF5BkRA8cCPKOQgknrb1Hj7CW9omKlcapUHqm-XZQ40odhQ7EvDrmbWdioKK4MGyZI2t9ezszDc7OzOMvUalfawSQzMwSLhGHdq8yII7b43EJEswCcnJnybJ4Wf9_iQ-6fO4Qy4MDaKmL9VtED-s6qX1fYUBsUvPQ1ecyAhFOPgquxZidkGsh_vHG_WbKNmeWyTnXPOMjNemUuMf7wd7ZOqL9uiiOm5tzPg2m5-Prj1a8mVn3eCO-fFb4cb_HP4ddqvHnDDshOQuu-LKe-zmL5UI77Nvx3Q7czBsqq81VCUUMFk0q4rEix9US2dhL5Q6gOlpVS9PF9YBKQPyigmwv4UhkKqE6aoimaHPwN4iWMtukxFGXZ-ddpvoe90AgWQ4ms2gKC0cjWYP2Hw8mu8f8r4pAy-UjhqOA48mS43SEq1XrsgUCsJxWPjMCOeNEA7RG1eESvN2ENuIyFEYQ5dI1UO2VVale8TAxt6j9F5iPNDeIhJ2IO8vjoRRaYTpNntFHMv7NVXnbbhcirxjY96zcZvxzfzlpi9rHrprnF1K_-acftkV9LiU8uVGHHLiXwikFKWr1nUudduziMDRX2jiNCSjER59_E__8YJdnx6M84_vJh-esBsyePVCcBk_ZVvNau2eEfRp8Hkr6j8BCAUArg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Atoms+on+a+Nitrogen-Doped+Boron+Phosphide+Monolayer%3A+A+New+Promising+Bifunctional+Electrocatalyst+for+ORR+and+OER&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Zeng%2C+Hanghang&rft.au=Liu%2C+Xinyi&rft.au=Chen%2C+Fengbo&rft.au=Chen%2C+Zhiguo&rft.date=2020-11-25&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=12&rft.issue=47&rft.spage=52549&rft_id=info:doi/10.1021%2Facsami.0c13597&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |