Single Atoms on a Nitrogen-Doped Boron Phosphide Monolayer: A New Promising Bifunctional Electrocatalyst for ORR and OER

Efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional electrocatalysts have been pursued for decades. Meanwhile, single metal atoms embedded in a two-dimensional material substrate (2D-substrate) have emerged as an outstanding catalyst. Herein, we report on compu...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 12; no. 47; pp. 52549 - 52559
Main Authors Zeng, Hanghang, Liu, Xinyi, Chen, Fengbo, Chen, Zhiguo, Fan, Xiaoli, Lau, Woonming
Format Journal Article
LanguageEnglish
Published American Chemical Society 25.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional electrocatalysts have been pursued for decades. Meanwhile, single metal atoms embedded in a two-dimensional material substrate (2D-substrate) have emerged as an outstanding catalyst. Herein, we report on computational ORR/OER efficiencies of a series of single atom catalyst systems, with a nitrogen-doped boron phosphide monolayer (N3-BP) as the 2D-substrate, and with Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rh, Pd, Ir, and Pt as the single-atom subject (M). In brief, our density functional theory results show that the overpotentials for ORR/OER are low for CoN3-BP, NiN3-BP, and PtN3-BP, with {ηORR; ηOER} of {0.36; 0.42 V}, {0.29; 0.44 V}, and {0.32; 0.25 V}, respectively. The relevant attributes such as the chemical stability of the 2D-substrate in the ORR/OER environments, immobilization of the single-atom subject on the 2D-substrate, and mechanisms of the ORR/OER activity and the catalyst recovery on the MN3-BP catalysts were carefully examined. The key to the comparative study is how the electronic states of the reaction center near the Fermi level of the catalytic system match the frontier orbitals of ORR/OER reaction intermediates. In short, our method predicts the ORR/OER catalytic efficiencies of novel catalysts via a single-atom/2D-substrate design strategy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.0c13597