The Role of Electrolyte Additives on the Interfacial Chemistry and Thermal Reactivity of Si-Anode-Based Li-Ion Battery

Silicon (Si) has gained huge attention as an anode material for next-generation high-capacity lithium-ion batteries (LIBs). However, despite its overwhelming beneficial features, its large-scale commercialization is hampered due to unavoidable challenges such as colossal volume change during (de)­al...

Full description

Saved in:
Bibliographic Details
Published inACS applied energy materials Vol. 2; no. 9; pp. 6513 - 6527
Main Authors Aupperle, Felix, von Aspern, Natascha, Berghus, Debbie, Weber, Felix, Eshetu, Gebrekidan Gebresilassie, Winter, Martin, Figgemeier, Egbert
Format Journal Article
LanguageEnglish
Published American Chemical Society 23.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Silicon (Si) has gained huge attention as an anode material for next-generation high-capacity lithium-ion batteries (LIBs). However, despite its overwhelming beneficial features, its large-scale commercialization is hampered due to unavoidable challenges such as colossal volume change during (de)­alloying, inherent low electronic and ionic conductivities, low Coulombic efficiency, unstable/dynamic solid electrolyte interphase (SEI), electrolyte drying and so forth. Among other strategies, the use of a fraction dose of chemical additives is hailed as the most effective, economic and scalable approach to realize Si-anode-based LIBs. Functional additives can modify the nature and chemical composition of the SEI, which in turn dictates the obtainable capacity, rate capability, Coulombic/energy efficiency, safety, and so forth of the battery system. Thus, we report a systematic and comparative investigation of various electrolyte additives, namely tetraethoxysilane (TEOS), (2-cyanoethyl)­triethoxysilane (TEOSCN), vinylene carbonate (VC), fluoroethylene carbonate (FEC), and a blend of TEOSCN, VC, and FEC (i.e., VC/FEC/TEOSCN) using electrochemical analysis, X-ray photoelectron spectroscopy, density functional theory calculation, and differential scanning calorimetry. The ternary mixture (FEC/VC/TEOSCN) results in a thinner SEI layer consisting of high shear modulus SEI-building species (mainly LiF). It also provides much improved thermal stability amid all tested additives, showing its potentiality to enable high capacity and safer Si-based anode LIBs. Thus, nitrile-functionalized silanes are highly promising electrolyte additives to boost the electrochemical performance and safety-induced risks of Si-based anode LIBs, emanating from the formation of a robust SEI layer.
ISSN:2574-0962
2574-0962
DOI:10.1021/acsaem.9b01094