Codon Selection Affects Recruitment of Ribosome-Associating Factors during Translation

An intriguing aspect of protein synthesis is how cotranslational events are managed inside the cell. In this study, we developed an in vivo bimolecular fluorescence complementation assay coupled to SecM stalling (BiFC-SecM) to study how codon usage influences the interactions of ribosome-associating...

Full description

Saved in:
Bibliographic Details
Published inACS synthetic biology Vol. 9; no. 2; pp. 329 - 342
Main Authors Rojano-Nisimura, Alejandra M, Haning, Katie, Janovsky, Justin, Vasquez, Kevin A, Thompson, Jeffrey P, Contreras, Lydia M
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 21.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An intriguing aspect of protein synthesis is how cotranslational events are managed inside the cell. In this study, we developed an in vivo bimolecular fluorescence complementation assay coupled to SecM stalling (BiFC-SecM) to study how codon usage influences the interactions of ribosome-associating factors that occur cotranslationally. We profiled ribosomal associations of a number of proteins, and observed differential association of chaperone proteins TF, DnaK, GroEL, and translocation factor Ffh as a result of introducing synonymous codon substitutions that change the affinity of the translating sequence to the ribosomal anti-Shine–Dalgarno (aSD) sequence. The use of pausing sequences within proteins regulates their transit within the translating ribosome. Our results indicate that the dynamics between cellular factors and the new polypeptide chain are affected by how codon composition is designed. Furthermore, associating factors may play a role in processes including protein quality control (folding and degradation) and cellular respiration.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2161-5063
2161-5063
DOI:10.1021/acssynbio.9b00344