Seismic imaging and attribute analysis of Chicxulub Crater central sector, Yucatan Platform, Gulf of Mexico

Chicxulub Crater, formed ~66Ma ago by an asteroid impact on the southern Gulf of Mexico, is the best preserved of the three large multi-ring basins in the terrestrial record. The crater structure is characterized by a semi-circular concentric ring pattern, marking the crater basin, peak ring, terrac...

Full description

Saved in:
Bibliographic Details
Published inActa geologica hispanica Vol. 16; no. 2; p. 215
Main Authors Canales-Garcia, I, Urrutia-Fucugauchi, J, Aguayo-Camargo, E
Format Journal Article
LanguageEnglish
Published Barcelona Geologica Acta 01.06.2018
Universitat de Barcelona Revistes Cientifiques de la Universitat de Barcelona
Universitat de Barcelona (UB), Geociències Barcelona (Geo3BCN), Institut de Diagnosi Ambiental i Estudis de l'Aigua (IDAEA), Universitat Autònoma de Barcelona (UAB)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chicxulub Crater, formed ~66Ma ago by an asteroid impact on the southern Gulf of Mexico, is the best preserved of the three large multi-ring basins in the terrestrial record. The crater structure is characterized by a semi-circular concentric ring pattern, marking the crater basin, peak ring, terrace zone and basement uplift. Analysis of a grid of 19 seismic reflection profiles using seismic attributes, marker horizons, contour surfaces and 3-D views is used to investigate the stratigraphy of the central zone. We used interactive software and routine applications to map the impact breccias, breccia-carbonate contact and post-impact carbonates. Four horizons marked by high-amplitude reflectors representing high-impedance contrasts were identified and laterally correlated in the seismic images. Complex trace attribute analysis was applied for petrophysical characterization. Surface contour maps of base and top of stratigraphic packages were constructed, which mapped the impactites and post- and pre-impact carbonate stratigraphy. Basin floor, marked by the contact between the impact breccias and overlying carbonates is shown by laterally discontinuous high-amplitude reflectors. Discontinuous scattered reflectors interpreted as the upper breccias beneath the crater floor, have an average thickness of ~300msm. The Paleogene sedimentary units are characterized by multiple reflectors with lateral continuity, which contrast with the seismic response of underlying breccias. The basal Paleocene sediments follow the basin floor relief. Upwards in the section, the carbonate strata are characterized by horizontal reflectors, which are interrupted by a regional unconformity. Onlap/downlap packages over the unconformity record a period of sea level change.
ISSN:1695-6133
0567-7505
1696-5728
DOI:10.1344/GeologicaActa2018.16.2.6