Perspectives on the role of terrestrial ecosystems in the ‘carbon neutrality’ strategy
The Chinese government has made a strategic decision to reach ‘carbon neutrality’ before 2060. China’s terrestrial ecosystem carbon sink is currently offsetting 7–15% of national anthropogenic emissions and has received widespread attention regarding its role in the ‘carbon neutrality’ strategy. We...
Saved in:
Published in | Science China. Earth sciences Vol. 65; no. 6; pp. 1178 - 1186 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Science China Press
01.06.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The Chinese government has made a strategic decision to reach ‘carbon neutrality’ before 2060. China’s terrestrial ecosystem carbon sink is currently offsetting 7–15% of national anthropogenic emissions and has received widespread attention regarding its role in the ‘carbon neutrality’ strategy. We provide perspectives on this question by inferring from the fundamental principles of terrestrial ecosystem carbon cycles. We first elucidate the basic ecological theory that, over the long-term succession of ecosystem without regenerative disturbances, the carbon sink of a given ecosystem will inevitably approach zero as the ecosystem reaches its equilibrium state or climax. In this sense, we argue that the currently observed global terrestrial carbon sink largely emerges from the processes of carbon uptake and release of ecosystem responding to environmental changes and, as such, the carbon sink is never an intrinsic ecosystem function. We further elaborate on the long-term effects of atmospheric CO
2
changes and afforestation on China’s terrestrial carbon sink: the enhancement of the terrestrial carbon sink by the CO
2
fertilization effect will diminish as the growth of the atmospheric CO
2
slows down, or completely stops, depending on international efforts to combat climate change, and carbon sinks induced by ecological engineering, such as afforestation, will also decline as forest ecosystems become mature and reach their late-successional stage. We conclude that terrestrial ecosystems have nonetheless an important role to play to gain time for industrial emission reduction during the implementation of the ‘carbon neutrality’ strategy. In addition, science-based ecological engineering measures including afforestation and forest management could be used to elongate the time of ecosystem carbon sink service. We propose that the terrestrial carbon sink pathway should be optimized, by addressing the questions of ‘when’ and ‘where’ to plan afforestation projects, in order to effectively strengthen the terrestrial ecosystem carbon sink and maximize its contribution to the realization of the ‘carbon neutrality’ strategy. |
---|---|
ISSN: | 1674-7313 1869-1897 |
DOI: | 10.1007/s11430-022-9926-6 |