Profile of Plasma and Urine Metabolites after the Intake of Almond [Prunus dulcis (Mill.) D.A. Webb] Polyphenols in Humans

Nut skins are considered to be a rich source of polyphenols and may be partially responsible for the numerous health effects associated with nut consumption. However, more bioavailability studies of nut skin polyphenols are needed to understand the health effects derived from nut consumption. The ai...

Full description

Saved in:
Bibliographic Details
Published inJournal of agricultural and food chemistry Vol. 57; no. 21; pp. 10134 - 10142
Main Authors Urpi-Sarda, Mireia, Garrido, Ignacio, Monagas, María, Gómez-Cordovés, Carmen, Medina-Remón, Alexander, Andres-Lacueva, Cristina, Bartolomé, Begoña
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 11.11.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nut skins are considered to be a rich source of polyphenols and may be partially responsible for the numerous health effects associated with nut consumption. However, more bioavailability studies of nut skin polyphenols are needed to understand the health effects derived from nut consumption. The aim of the present study was to determine the profiles of both phase II and microbial-derived phenolic metabolites in plasma and urine samples before and after the intake of almond skin polyphenols by healthy human subjects (n = 2). Glucuronide, O-methyl glucuronide, sulfate, and O-methyl sulfate derivatives of (epi)catechin, as well as the glucuronide conjugates of naringenin and glucuronide and sulfate conjugates of isorhamnetin, were detected in plasma and urine samples after consumption of almond skin polyphenols. The main microbial-derived metabolites of flavanols, such as 5-(dihydroxyphenyl)-γ-valerolactone and 5-(hydroxymethoxyphenyl)-γ-valerolactone, were also detected in their glucuronide and sulfate forms. In addition, numerous metabolites derived from further microbial degradation of hydroxyphenylvalerolactones, including hydroxyphenylpropionic, hydroxyphenylacetic, hydroxycinnamic, hydroxybenzoic, and hydroxyhippuric acids, registered major changes in urine after the consumption of almond skin polyphenols. The urinary excretion of these microbial metabolites was estimated to account for a larger proportion of the total polyphenol ingested than phase II metabolites of (epi)catechin, indicating the important role of intestinal bacteria in the metabolism of highly polymerized almond skin polyphenols. To the authors' knowledge this study constitutes the most complete report of the absorption of almond skin polyphenols in humans.
Bibliography:http://dx.doi.org/10.1021/jf901450z
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-8561
1520-5118
DOI:10.1021/jf901450z