X-ray Insights into Fluid Flow During Rock Failures: Nonlinear Modeling of Fluid Flow Through Fractures with Varied Roughness
Fluid flow and evolution mechanisms in fractured rocks are fundamental tasks in engineering fields such as geohazards prediction, geothermal resource exploitation, oil and gas exploitation, and geological sequestration of carbon dioxide. This study employed an enhanced X-ray imaging digital radiogra...
Saved in:
Published in | Geotechnical and geological engineering Vol. 42; no. 5; pp. 4049 - 4067 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.07.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Fluid flow and evolution mechanisms in fractured rocks are fundamental tasks in engineering fields such as geohazards prediction, geothermal resource exploitation, oil and gas exploitation, and geological sequestration of carbon dioxide. This study employed an enhanced X-ray imaging digital radiography to investigate nonlinear flow model of fluid through different roughness fractures. The X-ray images of fluid flow during rock failure were analyzed using a multi-threshold segmentation method applied to the X-ray absorption dose. The result show that a proposed nonlinear flow equation considers the joint roughness coefficient and the uniaxial compressive strength of the jointed rock, enabling a better understanding of the nonlinear flow behavior in fractured rock masses. This modeling approach has important theoretical and practical implications. By accounting for key factors influencing fluid flow behavior, it can help guide monitoring efforts to support early warning of fractured rock mass instability. Additionally, a more mechanistic understanding of flow processes may inform strategies to prevent engineering geological hazards. |
---|---|
ISSN: | 0960-3182 1573-1529 |
DOI: | 10.1007/s10706-024-02771-y |