Regulation of Gut Microbiota and Microbial Metabolome of Kefir Supernatant against Fusobacterium nucleatum and DSS-Coinduced Colitis

The aim of this study was to investigate the intervention effect of kefir supernatant (KS) on the initiation and progression of an ulcerative colitis (UC) murine model. We established an UC murine model by orally administrating with 109 CFUs of Fusobacterium nucleatum for 3 weeks and 3% dextran sulf...

Full description

Saved in:
Bibliographic Details
Published inJournal of agricultural and food chemistry Vol. 72; no. 7; pp. 3536 - 3548
Main Authors Zeng, Xuejun, Li, Jiahui, Wang, Xin, Liu, Ling, Shen, Shiqi, Li, Nanyang, Wang, Zhouli, Yuan, Yahong, Yue, Tianli
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 21.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The aim of this study was to investigate the intervention effect of kefir supernatant (KS) on the initiation and progression of an ulcerative colitis (UC) murine model. We established an UC murine model by orally administrating with 109 CFUs of Fusobacterium nucleatum for 3 weeks and 3% dextran sulfate sodium (DSS) treatment in the third week. KS was used to intervene in this colitis model. Our results showed that KS supplementation ameliorated the symptoms, restrained the secretion of pro-inflammatory cytokines (TNF-α, IL-6, and IL-17F), promoted the release of anti-inflammatory cytokines (IL-4 and IL-10), and ameliorated oxidative stress. Furthermore, the increased number of goblet cells and upregulated expression of MUC2, occludin and claudin-1 indicated that the colon barrier was protected by KS. Additionally, KS supplementation mitigated gut microbiota dysbiosis in the UC murine model, leading to an increase in the abundance of Blautia and Akkermansia and a decrease in the level of Bacteroides. The altered gut microbiota also affected colon metabolism, with differential metabolites mainly associated with the biosynthesis of the l-arginine pathway. This study revealed that KS supplementation restored the community structure of gut microbiota, altered the biosynthesis of l-arginine, and thereby modulated the process of colonic inflammation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.3c08050