Trienzymatic Complex System for Isomerization of Agar-Derived d‑Galactose into d‑Tagatose as a Low-Calorie Sweetener

d-Tagatose is a rare monosaccharide that is used in products in the food industry as a low-calorie sweetener. To facilitate biological conversion of d-tagatose, the agarolytic enzyme complexes based on the principle of the cellulosome structure were constructed through dockerin–cohesin interaction w...

Full description

Saved in:
Bibliographic Details
Published inJournal of agricultural and food chemistry Vol. 68; no. 10; pp. 3195 - 3202
Main Authors Jeong, Da Woon, Hyeon, Jeong Eun, Shin, Sang Kyu, Han, Sung Ok
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 11.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:d-Tagatose is a rare monosaccharide that is used in products in the food industry as a low-calorie sweetener. To facilitate biological conversion of d-tagatose, the agarolytic enzyme complexes based on the principle of the cellulosome structure were constructed through dockerin–cohesin interaction with the scaffoldin. The construction of agarolytic complexes composed of l-arabinose isomerase caused efficient isomerization activity on the agar-derived sugars. In a trienzymatic complex, the chimeric β-agarase (cAgaB) and anhydro-galactosidase (cAhgA) from Zobellia galactanivorans could synergistically hydrolyze natural agar substrates and l-arabinose isomerase (LsAraA Doc) from Lactobacillus sakei 23K could convert d-galactose into d-tagatose. The trienzymatic complex increased the concentration of d-tagatose from the agar substrate to 4.2 g/L. Compared with the monomeric enzyme, the multimeric enzyme showed a 1.4-fold increase in tagatose production, good thermostability, and reusability. A residual activity of 75% remained, and 52% of conversion was noted after five recycles. These results indicated that the dockerin-fused chimeric enzymes on the scaffoldin successfully isomerized d-galactose into d-tagatose with synergistic activity. Thus, the results demonstrated the possibility of advancing efficient strategies for utilizing red algae as a biomass source to produce d-tagatose in the industrial food field that uses marine biomass as the feedstock.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.9b07536