Mono-Dendronized β‑Cyclodextrin Derivatives as Multitasking Containers for Curcumin. Impacting Its Solubility, Loading, and Tautomeric Form

In this study, three mono-dendronized β-cyclodextrin (βCD) derivatives (βCD-1G, βCD-2G, and βCD-3G) were used as multitasking containers of curcumin (CUR) to influence its aqueous solubility and tautomerism, both of which are related to its biological activity. We evaluated the relevant physicochemi...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 126; no. 7; pp. 1529 - 1538
Main Authors Cabrera-Quiñones, Neyra Citlali, López-Méndez, Luis José, Ramos, Estrella, Rojas-Aguirre, Yareli, Guadarrama, Patricia
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, three mono-dendronized β-cyclodextrin (βCD) derivatives (βCD-1G, βCD-2G, and βCD-3G) were used as multitasking containers of curcumin (CUR) to influence its aqueous solubility and tautomerism, both of which are related to its biological activity. We evaluated the relevant physicochemical properties of these containers associated with their potential hosting capacity. All mono-dendronized derivatives exhibited enhanced solubility in different solvents, including water, in comparison with native βCD. Gas-phase geometry optimizations by density functional theory (DFT) confirmed that none of the dendrons blocked the passage of CUR into the βCD cavity, and depending on the generation, different preorganization scenarios were promoted before complexation. Phase solubility diagrams showed that all the dendronized containers have superior performance for solubilizing CUR compared to native βCD. We proved that coprecipitation is most efficient than lyophilization for forming inclusion complexes (ICs) with dendronized containers. Even though βCD-3G with the largest 3G dendron exhibited the highest CUR loading, the complexation of CUR with βCD-2G provided the supramolecular system that contains CUR preferentially in its diketo tautomer, which is known for its antioxidant activity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1520-6106
1520-5207
DOI:10.1021/acs.jpcb.1c09811