Pauli frames for quantum computer architectures
The Pauli frame mechanism allows Pauli gates to be tracked in classical electronics and can relax the timing constraints for error syndrome measurement and error decoding. When building a quantum computer, such a mechanism may be beneficial, and the goal of this paper is not only to study the workin...
Saved in:
Published in | 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC) pp. 1 - 6 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The Pauli frame mechanism allows Pauli gates to be tracked in classical electronics and can relax the timing constraints for error syndrome measurement and error decoding. When building a quantum computer, such a mechanism may be beneficial, and the goal of this paper is not only to study the working principles of a Pauli frame but also to quantify its potential effect on the logical error rate. To this purpose, we implemented and simulated the Pauli frame module which, in principle, can be directly mapped into a hardware implementation. Simulation of a surface code 17 logical qubit has shown that a Pauli frame can reduce the error rate of a logical qubit up to 70% compared to the same logical qubit without Pauli frame when the decoding time equals the error correction time, and maximum parallelism can be obtained. |
---|---|
DOI: | 10.1145/3061639.3062300 |