Gemmini: Enabling Systematic Deep-Learning Architecture Evaluation via Full-Stack Integration

DNN accelerators are often developed and evaluated in isolation without considering the cross-stack, system-level effects in real-world environments. This makes it difficult to appreciate the impact of Systemon-Chip (SoC) resource contention, OS overheads, and programming-stack inefficiencies on ove...

Full description

Saved in:
Bibliographic Details
Published in2021 58th ACM/IEEE Design Automation Conference (DAC) pp. 769 - 774
Main Authors Genc, Hasan, Kim, Seah, Amid, Alon, Haj-Ali, Ameer, Iyer, Vighnesh, Prakash, Pranav, Zhao, Jerry, Grubb, Daniel, Liew, Harrison, Mao, Howard, Ou, Albert, Schmidt, Colin, Steffl, Samuel, Wright, John, Stoica, Ion, Ragan-Kelley, Jonathan, Asanovic, Krste, Nikolic, Borivoje, Shao, Yakun Sophia
Format Conference Proceeding
LanguageEnglish
Published IEEE 05.12.2021
Subjects
Online AccessGet full text
DOI10.1109/DAC18074.2021.9586216

Cover

Abstract DNN accelerators are often developed and evaluated in isolation without considering the cross-stack, system-level effects in real-world environments. This makes it difficult to appreciate the impact of Systemon-Chip (SoC) resource contention, OS overheads, and programming-stack inefficiencies on overall performance/energy-efficiency. To address this challenge, we present Gemmini, an open-source, full-stack DNN accelerator generator. Gemmini generates a wide design-space of efficient ASIC accelerators from a flexible architectural template, together with flexible programming stacks and full SoCs with shared resources that capture system-level effects. Gemmini-generated accelerators have also been fabricated, delivering up to three orders-of-magnitude speedups over high-performance CPUs on various DNN benchmarks.
AbstractList DNN accelerators are often developed and evaluated in isolation without considering the cross-stack, system-level effects in real-world environments. This makes it difficult to appreciate the impact of Systemon-Chip (SoC) resource contention, OS overheads, and programming-stack inefficiencies on overall performance/energy-efficiency. To address this challenge, we present Gemmini, an open-source, full-stack DNN accelerator generator. Gemmini generates a wide design-space of efficient ASIC accelerators from a flexible architectural template, together with flexible programming stacks and full SoCs with shared resources that capture system-level effects. Gemmini-generated accelerators have also been fabricated, delivering up to three orders-of-magnitude speedups over high-performance CPUs on various DNN benchmarks.
Author Prakash, Pranav
Wright, John
Stoica, Ion
Mao, Howard
Grubb, Daniel
Haj-Ali, Ameer
Amid, Alon
Kim, Seah
Zhao, Jerry
Ragan-Kelley, Jonathan
Nikolic, Borivoje
Shao, Yakun Sophia
Genc, Hasan
Asanovic, Krste
Iyer, Vighnesh
Liew, Harrison
Ou, Albert
Schmidt, Colin
Steffl, Samuel
Author_xml – sequence: 1
  givenname: Hasan
  surname: Genc
  fullname: Genc, Hasan
  organization: UC Berkeley
– sequence: 2
  givenname: Seah
  surname: Kim
  fullname: Kim, Seah
  organization: UC Berkeley
– sequence: 3
  givenname: Alon
  surname: Amid
  fullname: Amid, Alon
  organization: UC Berkeley
– sequence: 4
  givenname: Ameer
  surname: Haj-Ali
  fullname: Haj-Ali, Ameer
  organization: UC Berkeley
– sequence: 5
  givenname: Vighnesh
  surname: Iyer
  fullname: Iyer, Vighnesh
  organization: UC Berkeley
– sequence: 6
  givenname: Pranav
  surname: Prakash
  fullname: Prakash, Pranav
  organization: UC Berkeley
– sequence: 7
  givenname: Jerry
  surname: Zhao
  fullname: Zhao, Jerry
  organization: UC Berkeley
– sequence: 8
  givenname: Daniel
  surname: Grubb
  fullname: Grubb, Daniel
  organization: UC Berkeley
– sequence: 9
  givenname: Harrison
  surname: Liew
  fullname: Liew, Harrison
  organization: UC Berkeley
– sequence: 10
  givenname: Howard
  surname: Mao
  fullname: Mao, Howard
  organization: UC Berkeley
– sequence: 11
  givenname: Albert
  surname: Ou
  fullname: Ou, Albert
  organization: UC Berkeley
– sequence: 12
  givenname: Colin
  surname: Schmidt
  fullname: Schmidt, Colin
  organization: UC Berkeley
– sequence: 13
  givenname: Samuel
  surname: Steffl
  fullname: Steffl, Samuel
  organization: UC Berkeley
– sequence: 14
  givenname: John
  surname: Wright
  fullname: Wright, John
  organization: UC Berkeley
– sequence: 15
  givenname: Ion
  surname: Stoica
  fullname: Stoica, Ion
  organization: UC Berkeley
– sequence: 16
  givenname: Jonathan
  surname: Ragan-Kelley
  fullname: Ragan-Kelley, Jonathan
  email: hngenc@berkeley.edu
  organization: MIT
– sequence: 17
  givenname: Krste
  surname: Asanovic
  fullname: Asanovic, Krste
  organization: UC Berkeley
– sequence: 18
  givenname: Borivoje
  surname: Nikolic
  fullname: Nikolic, Borivoje
  organization: UC Berkeley
– sequence: 19
  givenname: Yakun Sophia
  surname: Shao
  fullname: Shao, Yakun Sophia
  organization: UC Berkeley
BookMark eNotkM1Kw0AcxFdQUGueQIR9gcT9TuItpGktBDxUj1I2m__WxWRbkk2hb2_UXmYOv2Fg5h5d-4MHhJ4oSSgl-fOyKGlGUpEwwmiSy0wxqq5QlKcZVUoKzlJBblE0jq4hishMzHqHPtfQ9867F1x53XTO7_H2PAbodXAGLwGOcQ168L-gGMyXC2DCNACuTrqb5tDB45PTeDV1XbwN2nzjjQ-wH_7QA7qxuhshuvgCfayq9_I1rt_Wm7KoY825CLGW3DCwWoIluQQmDUCTKy6ESVvLsnlLozSkbZtaA63hykBDMmsoZUaoli_Q43-vA4DdcXC9Hs67ywn8Bwz_VwU
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC18074.2021.9586216
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665432740
1665432748
EndPage 774
ExternalDocumentID 9586216
Genre orig-research
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a334t-a53c2efa5ef095e25ceeb96344c7df28862b6ae7dd7fcedc36ceb08fc112c46d3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:28:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a334t-a53c2efa5ef095e25ceeb96344c7df28862b6ae7dd7fcedc36ceb08fc112c46d3
OpenAccessLink https://hdl.handle.net/1721.1/143844
PageCount 6
ParticipantIDs ieee_primary_9586216
PublicationCentury 2000
PublicationDate 2021-Dec.-5
PublicationDateYYYYMMDD 2021-12-05
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.-5
  day: 05
PublicationDecade 2020
PublicationTitle 2021 58th ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib060584060
Score 2.5366545
Snippet DNN accelerators are often developed and evaluated in isolation without considering the cross-stack, system-level effects in real-world environments. This...
SourceID ieee
SourceType Publisher
StartPage 769
SubjectTerms Accelerator architectures
Benchmark testing
Design automation
Operating systems
Productivity
Programming
Systematics
Title Gemmini: Enabling Systematic Deep-Learning Architecture Evaluation via Full-Stack Integration
URI https://ieeexplore.ieee.org/document/9586216
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT55UWvFNDh7NdneTbLreSh9WoSJooRcpecyKFNsiWw_-eifb7frAg7ewIeyQzDAzmfm-EHLR4c5IF6ZMOSWZ0OCYVoqj4WE6hEod26KCP75LRhNxO5XTGrmssDAAUDSfQeCHRS3fLe3aX5W1U4nxd5TUSR3VbIPV2uqOr-6hbwpLkE4Upu1-txd5qhdMAuMoKNf-eESl8CHDXTLe_n3TOjIP1rkJ7McvYsb_irdHWl9oPXpf-aF9UoNFkzxdw6unDbmiA4-Owgn6UJE20z7AipXUqs-0-62YQAcV_Td9f9HUp6gMI1I7pzclswROtchkOHjsjVj5lALTnIucacltDJmWkGFMBbFEmQzanhBWuSzuoOAm0aCcU5kFZ3liwYSdzGI4ZkXi-AFpLJYLOCRUWWUc4Do0dsGdMEI4KeLIchtBatQRafqtma02bBmzcleO__58Qnb88RQNIvKUNPK3NZyhm8_NeXG-n_jxqZY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAC1CLeeGAkaRLbccNW9UELbYVEK3VBVWxfEKpoK5Qy8Os5p2l4iIEtimXlZPv03eXu-0zIVZ0ZJYwXOdJI4fAYjBNLydDxMB3CQx3orII_GIbdMb-biEmJXBdcGADIms_AtY9ZLd8s9Mr-KqtFAuNvP9wi24j7XKzZWpvTY-t7iE5eTtPxvajWajR9K_aCaWDgu_nsH9eoZCjS2SODzffXzSMzd5UqV3_8kmb8r4H7pPrF16MPBRIdkBLMK-TpFl6tcMgNbVt-FA7Qx0K2mbYAlk4urvpMG9_KCbRdCIDT95eY2iTVwZhUz2gv15bAoSoZd9qjZtfJL1NwYsZ46sSC6QCSWECCURUEAm1S6H2ca2mSoI6GqzAGaYxMNBjNQg3KqycaAzLNQ8MOSXm-mMMRoVJLZQDnobtzZrji3Age-JppHyIlj0nFLs10udbLmOarcvL360uy0x0N-tN-b3h_SnbtVmXtIuKMlNO3FZwj6KfqItvrTwcArOM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+58th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=Gemmini%3A+Enabling+Systematic+Deep-Learning+Architecture+Evaluation+via+Full-Stack+Integration&rft.au=Genc%2C+Hasan&rft.au=Kim%2C+Seah&rft.au=Amid%2C+Alon&rft.au=Haj-Ali%2C+Ameer&rft.date=2021-12-05&rft.pub=IEEE&rft.spage=769&rft.epage=774&rft_id=info:doi/10.1109%2FDAC18074.2021.9586216&rft.externalDocID=9586216