Gemmini: Enabling Systematic Deep-Learning Architecture Evaluation via Full-Stack Integration
DNN accelerators are often developed and evaluated in isolation without considering the cross-stack, system-level effects in real-world environments. This makes it difficult to appreciate the impact of Systemon-Chip (SoC) resource contention, OS overheads, and programming-stack inefficiencies on ove...
Saved in:
Published in | 2021 58th ACM/IEEE Design Automation Conference (DAC) pp. 769 - 774 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
05.12.2021
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/DAC18074.2021.9586216 |
Cover
Abstract | DNN accelerators are often developed and evaluated in isolation without considering the cross-stack, system-level effects in real-world environments. This makes it difficult to appreciate the impact of Systemon-Chip (SoC) resource contention, OS overheads, and programming-stack inefficiencies on overall performance/energy-efficiency. To address this challenge, we present Gemmini, an open-source, full-stack DNN accelerator generator. Gemmini generates a wide design-space of efficient ASIC accelerators from a flexible architectural template, together with flexible programming stacks and full SoCs with shared resources that capture system-level effects. Gemmini-generated accelerators have also been fabricated, delivering up to three orders-of-magnitude speedups over high-performance CPUs on various DNN benchmarks. |
---|---|
AbstractList | DNN accelerators are often developed and evaluated in isolation without considering the cross-stack, system-level effects in real-world environments. This makes it difficult to appreciate the impact of Systemon-Chip (SoC) resource contention, OS overheads, and programming-stack inefficiencies on overall performance/energy-efficiency. To address this challenge, we present Gemmini, an open-source, full-stack DNN accelerator generator. Gemmini generates a wide design-space of efficient ASIC accelerators from a flexible architectural template, together with flexible programming stacks and full SoCs with shared resources that capture system-level effects. Gemmini-generated accelerators have also been fabricated, delivering up to three orders-of-magnitude speedups over high-performance CPUs on various DNN benchmarks. |
Author | Prakash, Pranav Wright, John Stoica, Ion Mao, Howard Grubb, Daniel Haj-Ali, Ameer Amid, Alon Kim, Seah Zhao, Jerry Ragan-Kelley, Jonathan Nikolic, Borivoje Shao, Yakun Sophia Genc, Hasan Asanovic, Krste Iyer, Vighnesh Liew, Harrison Ou, Albert Schmidt, Colin Steffl, Samuel |
Author_xml | – sequence: 1 givenname: Hasan surname: Genc fullname: Genc, Hasan organization: UC Berkeley – sequence: 2 givenname: Seah surname: Kim fullname: Kim, Seah organization: UC Berkeley – sequence: 3 givenname: Alon surname: Amid fullname: Amid, Alon organization: UC Berkeley – sequence: 4 givenname: Ameer surname: Haj-Ali fullname: Haj-Ali, Ameer organization: UC Berkeley – sequence: 5 givenname: Vighnesh surname: Iyer fullname: Iyer, Vighnesh organization: UC Berkeley – sequence: 6 givenname: Pranav surname: Prakash fullname: Prakash, Pranav organization: UC Berkeley – sequence: 7 givenname: Jerry surname: Zhao fullname: Zhao, Jerry organization: UC Berkeley – sequence: 8 givenname: Daniel surname: Grubb fullname: Grubb, Daniel organization: UC Berkeley – sequence: 9 givenname: Harrison surname: Liew fullname: Liew, Harrison organization: UC Berkeley – sequence: 10 givenname: Howard surname: Mao fullname: Mao, Howard organization: UC Berkeley – sequence: 11 givenname: Albert surname: Ou fullname: Ou, Albert organization: UC Berkeley – sequence: 12 givenname: Colin surname: Schmidt fullname: Schmidt, Colin organization: UC Berkeley – sequence: 13 givenname: Samuel surname: Steffl fullname: Steffl, Samuel organization: UC Berkeley – sequence: 14 givenname: John surname: Wright fullname: Wright, John organization: UC Berkeley – sequence: 15 givenname: Ion surname: Stoica fullname: Stoica, Ion organization: UC Berkeley – sequence: 16 givenname: Jonathan surname: Ragan-Kelley fullname: Ragan-Kelley, Jonathan email: hngenc@berkeley.edu organization: MIT – sequence: 17 givenname: Krste surname: Asanovic fullname: Asanovic, Krste organization: UC Berkeley – sequence: 18 givenname: Borivoje surname: Nikolic fullname: Nikolic, Borivoje organization: UC Berkeley – sequence: 19 givenname: Yakun Sophia surname: Shao fullname: Shao, Yakun Sophia organization: UC Berkeley |
BookMark | eNotkM1Kw0AcxFdQUGueQIR9gcT9TuItpGktBDxUj1I2m__WxWRbkk2hb2_UXmYOv2Fg5h5d-4MHhJ4oSSgl-fOyKGlGUpEwwmiSy0wxqq5QlKcZVUoKzlJBblE0jq4hishMzHqHPtfQ9867F1x53XTO7_H2PAbodXAGLwGOcQ168L-gGMyXC2DCNACuTrqb5tDB45PTeDV1XbwN2nzjjQ-wH_7QA7qxuhshuvgCfayq9_I1rt_Wm7KoY825CLGW3DCwWoIluQQmDUCTKy6ESVvLsnlLozSkbZtaA63hykBDMmsoZUaoli_Q43-vA4DdcXC9Hs67ywn8Bwz_VwU |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/DAC18074.2021.9586216 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781665432740 1665432748 |
EndPage | 774 |
ExternalDocumentID | 9586216 |
Genre | orig-research |
GroupedDBID | 6IE 6IH ACM ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIO |
ID | FETCH-LOGICAL-a334t-a53c2efa5ef095e25ceeb96344c7df28862b6ae7dd7fcedc36ceb08fc112c46d3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:28:29 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a334t-a53c2efa5ef095e25ceeb96344c7df28862b6ae7dd7fcedc36ceb08fc112c46d3 |
OpenAccessLink | https://hdl.handle.net/1721.1/143844 |
PageCount | 6 |
ParticipantIDs | ieee_primary_9586216 |
PublicationCentury | 2000 |
PublicationDate | 2021-Dec.-5 |
PublicationDateYYYYMMDD | 2021-12-05 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-Dec.-5 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | 2021 58th ACM/IEEE Design Automation Conference (DAC) |
PublicationTitleAbbrev | DAC |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib060584060 |
Score | 2.5366545 |
Snippet | DNN accelerators are often developed and evaluated in isolation without considering the cross-stack, system-level effects in real-world environments. This... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 769 |
SubjectTerms | Accelerator architectures Benchmark testing Design automation Operating systems Productivity Programming Systematics |
Title | Gemmini: Enabling Systematic Deep-Learning Architecture Evaluation via Full-Stack Integration |
URI | https://ieeexplore.ieee.org/document/9586216 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5tT55UWvFNDh7NdneTbLreSh9WoSJooRcpecyKFNsiWw_-eifb7frAg7ewIeyQzDAzmfm-EHLR4c5IF6ZMOSWZ0OCYVoqj4WE6hEod26KCP75LRhNxO5XTGrmssDAAUDSfQeCHRS3fLe3aX5W1U4nxd5TUSR3VbIPV2uqOr-6hbwpLkE4Upu1-txd5qhdMAuMoKNf-eESl8CHDXTLe_n3TOjIP1rkJ7McvYsb_irdHWl9oPXpf-aF9UoNFkzxdw6unDbmiA4-Owgn6UJE20z7AipXUqs-0-62YQAcV_Td9f9HUp6gMI1I7pzclswROtchkOHjsjVj5lALTnIucacltDJmWkGFMBbFEmQzanhBWuSzuoOAm0aCcU5kFZ3liwYSdzGI4ZkXi-AFpLJYLOCRUWWUc4Do0dsGdMEI4KeLIchtBatQRafqtma02bBmzcleO__58Qnb88RQNIvKUNPK3NZyhm8_NeXG-n_jxqZY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAC1CLeeGAkaRLbccNW9UELbYVEK3VBVWxfEKpoK5Qy8Os5p2l4iIEtimXlZPv03eXu-0zIVZ0ZJYwXOdJI4fAYjBNLydDxMB3CQx3orII_GIbdMb-biEmJXBdcGADIms_AtY9ZLd8s9Mr-KqtFAuNvP9wi24j7XKzZWpvTY-t7iE5eTtPxvajWajR9K_aCaWDgu_nsH9eoZCjS2SODzffXzSMzd5UqV3_8kmb8r4H7pPrF16MPBRIdkBLMK-TpFl6tcMgNbVt-FA7Qx0K2mbYAlk4urvpMG9_KCbRdCIDT95eY2iTVwZhUz2gv15bAoSoZd9qjZtfJL1NwYsZ46sSC6QCSWECCURUEAm1S6H2ca2mSoI6GqzAGaYxMNBjNQg3KqycaAzLNQ8MOSXm-mMMRoVJLZQDnobtzZrji3Age-JppHyIlj0nFLs10udbLmOarcvL360uy0x0N-tN-b3h_SnbtVmXtIuKMlNO3FZwj6KfqItvrTwcArOM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+58th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=Gemmini%3A+Enabling+Systematic+Deep-Learning+Architecture+Evaluation+via+Full-Stack+Integration&rft.au=Genc%2C+Hasan&rft.au=Kim%2C+Seah&rft.au=Amid%2C+Alon&rft.au=Haj-Ali%2C+Ameer&rft.date=2021-12-05&rft.pub=IEEE&rft.spage=769&rft.epage=774&rft_id=info:doi/10.1109%2FDAC18074.2021.9586216&rft.externalDocID=9586216 |