Gemmini: Enabling Systematic Deep-Learning Architecture Evaluation via Full-Stack Integration
DNN accelerators are often developed and evaluated in isolation without considering the cross-stack, system-level effects in real-world environments. This makes it difficult to appreciate the impact of Systemon-Chip (SoC) resource contention, OS overheads, and programming-stack inefficiencies on ove...
Saved in:
Published in | 2021 58th ACM/IEEE Design Automation Conference (DAC) pp. 769 - 774 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
05.12.2021
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/DAC18074.2021.9586216 |
Cover
Summary: | DNN accelerators are often developed and evaluated in isolation without considering the cross-stack, system-level effects in real-world environments. This makes it difficult to appreciate the impact of Systemon-Chip (SoC) resource contention, OS overheads, and programming-stack inefficiencies on overall performance/energy-efficiency. To address this challenge, we present Gemmini, an open-source, full-stack DNN accelerator generator. Gemmini generates a wide design-space of efficient ASIC accelerators from a flexible architectural template, together with flexible programming stacks and full SoCs with shared resources that capture system-level effects. Gemmini-generated accelerators have also been fabricated, delivering up to three orders-of-magnitude speedups over high-performance CPUs on various DNN benchmarks. |
---|---|
DOI: | 10.1109/DAC18074.2021.9586216 |