Foamlike Xanthan Gum/Clay Aerogel Composites and Tailoring Properties by Blending with Agar
Foamlike aerogel composites based on renewable xanthan gum (XG) and sodium montmorillonite clay (Na+-MMT) have been prepared using an environmentally friendly freeze-drying process. Additionally, the biobased polysaccharide agar was used to improve the properties of XG/clay aerogels. Fourier transfo...
Saved in:
Published in | Industrial & engineering chemistry research Vol. 53; no. 18; pp. 7680 - 7687 |
---|---|
Main Authors | , , |
Format | Journal Article Publication |
Language | English |
Published |
American Chemical Society
07.05.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Foamlike aerogel composites based on renewable xanthan gum (XG) and sodium montmorillonite clay (Na+-MMT) have been prepared using an environmentally friendly freeze-drying process. Additionally, the biobased polysaccharide agar was used to improve the properties of XG/clay aerogels. Fourier transform infrared spectroscopy showed molecular interactions between biopolymers and clay in the aerogel composites. A wide range of microstructures and mechanical properties were obtained with a minimal variation in the density by changing the blended ratio of xanthan gum and agar, with particular emphasis on the addition of 2.5% agar to XG/clay aerogels, which significantly enhanced the mechanical properties. Thermogravimetric analysis revealed that clay improved the thermal stability of aerogels; however, the thermal stability of blends of xanthan gum and agar worsened. Flammability was analyzed through cone calorimeter, which suggested xanthan gum/clay aerogels possessed lower flammability than other typical foams. Clay served as a heat and mass transport, which significantly improved the flame retardancy of the base aerogels. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/ie500490n |