Engineered Graphitic Carbon Nitride-Based Photocatalysts for Visible-Light-Driven Water Splitting: A Review
Graphitic carbon nitride (g-C3N4), a polymeric semiconductor, has become a rising star for photocatalytic energy conversion because of its facile accessibility, metal-free nature, low cost, and environmentally benign properties. This work reviews the latest progress of g-C3N4-based materials in visi...
Saved in:
Published in | Energy & fuels Vol. 35; no. 8; pp. 6504 - 6526 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
15.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Graphitic carbon nitride (g-C3N4), a polymeric semiconductor, has become a rising star for photocatalytic energy conversion because of its facile accessibility, metal-free nature, low cost, and environmentally benign properties. This work reviews the latest progress of g-C3N4-based materials in visible-light-driven water splitting to hydrogen. It begins with a brief history of g-C3N4, followed by various engineering strategies of g-C3N4, such as elemental doping, copolymerization, crystalline tailoring, surface engineering, and single-atom modification, for elevated photocatalytic water decomposition. In addition, the synthesis of g-C3N4 in different dimensions (0D, 1D, 2D, and 3D) and configurations of a series of g-C3N4-based heterojunctions (type II, Z-scheme, S-scheme, g-C3N4/metal, and g-C3N4/carbon heterojunctions) were also discussed for their improvement in photocatalytic hydrogen production. Lastly, the challenges and opportunities of g-C3N4-based nanomaterials are provided. It is anticipated that this review will promote the further development of the emerging g-C3N4-based materials for more efficiency in photocatalytic water splitting to hydrogen. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0887-0624 1520-5029 1520-5029 |
DOI: | 10.1021/acs.energyfuels.1c00503 |