Ultrastrong Freestanding Graphene Oxide Nanomembranes with Surface-Enhanced Raman Scattering Functionality by Solvent-Assisted Single-Component Layer-by-Layer Assembly

We report single-component ultrathin reduced graphene oxide (rGO) nanomembranes fabricated via nonconventional layer-by-layer assembly (LbL) of graphene oxide flakes, using organic solvent instead of water to provide strong complementary interactions and to ensure the uniform layered growth. This un...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 10; no. 7; pp. 6702 - 6715
Main Authors Xiong, Rui, Hu, Kesong, Zhang, Shuaidi, Lu, Canhui, Tsukruk, Vladimir V
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We report single-component ultrathin reduced graphene oxide (rGO) nanomembranes fabricated via nonconventional layer-by-layer assembly (LbL) of graphene oxide flakes, using organic solvent instead of water to provide strong complementary interactions and to ensure the uniform layered growth. This unique approach does not require regular polymeric from the assembly process or intermediate surface chemical modification. The resulting ultrastrong freestanding graphene oxide (rGO) LbL nanomembranes with a very low thickness of 3 nm (three GO monolayers) can be transferred over a large surface area across tens of square centimeters by using a facile surface-tension-assisted release technique. These uniform and ultrasmooth nanomembranes with high transparency (up to 93% at 550 nm) and high electrical conductivity (up to 3000 S/m) also exhibit outstanding mechanical strength of 0.5 GPa and a Young’s modulus of 120 GPa, which are several times higher than that of other reported regular rGO films. Furthermore, up to 94 wt % of silver nanoplates can be sandwiched between 5 nm GO layers to construct a flexible freestanding protected noble metal monolayer with surface-enhanced Raman scattering properties. These flexible rGO/Ag/rGO nanomembranes can be transferred and conformally coat complex surfaces and show a cleaner Raman signature, enhanced wet stability, and lower oxidation compared to bare Ag nanostructures.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.6b02012