High-Entropy Rock-Salt Surface Layer Stabilizes the Ultrahigh-Ni Single-Crystal Cathode

Single-crystalline Ni-rich layered oxides are one of the most promising cathode materials for lithium-ion batteries due to their superior structural stability. However, sluggish lithium-ion diffusion kinetics and interfacial issues hinder their practical applications. These issues intensify with inc...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 18; no. 49; pp. 33706 - 33717
Main Authors Xu, Zhongxing, Chen, Xinghan, Fan, Wenguang, Zhan, Minzhi, Mu, Xulin, Cao, Hongbin, Wang, Xiaohu, Xue, Haoyu, Gao, Zhihai, Liang, Yongzhi, Liu, Jiajie, Tan, Xinghua, Pan, Feng
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 10.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Single-crystalline Ni-rich layered oxides are one of the most promising cathode materials for lithium-ion batteries due to their superior structural stability. However, sluggish lithium-ion diffusion kinetics and interfacial issues hinder their practical applications. These issues intensify with increasing Ni content in the ultrahigh-Ni regime (≥90%), significantly threatening the practical viability of the single-crystalline strategy for ultrahigh-Ni layered oxide cathodes. Herein, by developing a high-entropy coating strategy, we successfully constructed an epitaxial lattice-coherent high-entropy rock-salt layer (∼3 nm) via Zr and Al doping on the surface of the single-crystalline cathode LiNi0.92Co0.05Mn0.03O2 through an in situ modification process. The surface high-entropy rock-salt layer with tailored Ni valence and lattice coherence not only greatly improves lithium-ion diffusion kinetics but also suppresses interface parasitic reactions and surface structural degradations. The high-entropy surface layer-stabilized ultrahigh-Ni single-crystalline cathode (SC-Ni92-ZA) demonstrates significantly improved rate and cycling performances (127.5 mAh g–1 at 20C, capacity retention of 74.9% after 500 cycles at 1C) in a half-cell. The SC-Ni92-ZA exhibits a capacity retention of 87.1% after 600 cycles at 1C in a full-cell. This epitaxial lattice-coherent high-entropy coating strategy develops a promising avenue for developing high-capacity, long-life cathode materials.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1936-0851
1936-086X
1936-086X
DOI:10.1021/acsnano.4c13911