Laboratory-Scale Membrane Reactor for the Generation of Anhydrous Diazomethane
A configurationally simple and robust semibatch apparatus for the in situ on-demand generation of anhydrous solutions of diazomethane (CH2N2) avoiding distillation methods is presented. Diazomethane is produced by base-mediated decomposition of commercially available Diazald within a semipermeable T...
Saved in:
Published in | Journal of organic chemistry Vol. 81; no. 14; pp. 5814 - 5823 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
15.07.2016
|
Online Access | Get full text |
Cover
Loading…
Summary: | A configurationally simple and robust semibatch apparatus for the in situ on-demand generation of anhydrous solutions of diazomethane (CH2N2) avoiding distillation methods is presented. Diazomethane is produced by base-mediated decomposition of commercially available Diazald within a semipermeable Teflon AF-2400 tubing and subsequently selectively separated from the tubing into a solvent- and substrate-filled flask (tube-in-flask reactor). Reactions with CH2N2 can therefore be performed directly in the flask without dangerous and labor-intensive purification operations or exposure of the operator to CH2N2. The reactor has been employed for the methylation of carboxylic acids, the synthesis of α-chloro ketones and pyrazoles, and palladium-catalyzed cyclopropanation reactions on laboratory scale. The implementation of in-line FTIR technology allowed monitoring of the CH2N2 generation and its consumption. In addition, larger scales (1.8 g diazomethane per hour) could be obtained via parallelization (numbering up) by simply wrapping several membrane tubings into the flask. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-3263 1520-6904 |
DOI: | 10.1021/acs.joc.6b01190 |