Ultrastable Bimolecular G‑Quadruplexes Programmed DNA Nanoassemblies for Reconfigurable Biomimetic DNAzymes

The relatively low stability and polymorphism of bimolecular G-quadruplexes (bi-G4s) are big difficulties that are faced in employing them to guide DNA assembly, as they are usually subject to a transformation into more stable tetramolecular or G-wire structures favored by K+ or Mg2+. Although bi-G4...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 13; no. 10; pp. 11947 - 11954
Main Authors Zheng, Jiao, Du, Yi, Wang, Huihui, Peng, Pai, Shi, Lili, Li, Tao
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The relatively low stability and polymorphism of bimolecular G-quadruplexes (bi-G4s) are big difficulties that are faced in employing them to guide DNA assembly, as they are usually subject to a transformation into more stable tetramolecular or G-wire structures favored by K+ or Mg2+. Although bi-G4s benefit by additional duplex handles, a challenge remains in tailoring their intrinsic properties to resolve the above difficulties. Toward this challenge, here we engineer several ultrastable bi-G4s via replacing their nucleotide loops with special mini-hairpins, which consist of a GAA loop and a short GC-paired stem. Such a structural alteration favors the formation of G:C:G:C tetrads in the head-to-head folding topologies of bi-G4s and improves their thermal stability, with an increase in the melting temperature by up to 25 °C. It dramatically reduces their structural conversion into G-wires, verified by atomic force microscopy. These features enable the utilization of two well-chosen bi-G4s to shape a DNA nanotriangle into the desired framework nucleic acid (FNA) architectures such as “bowknot” and “butterfly” that are reversibly switched by the bi-G4s. On this basis, we further build a reconfigurable DNAzyme device to mimic the activation of human telomerase that is modulated by the G4 dimerization. Our designed ultrastable bi-G4s will offer a promising tool for dynamically manipulating intracellular DNA nanoassemblies with endogenous K+ and exploring the relationship between dimerization and function in some physiological processes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1936-0851
1936-086X
1936-086X
DOI:10.1021/acsnano.9b06029