Steering Nanohelix and Upconverted Circularly Polarized Luminescence by Using Completely Achiral Components

Enormous attention has been paid to upconverted circularly polarized luminescence (UC-CPL). However, so far, chiral species are still needed in UC-CPL materials, either through the covalent or noncovalent bond. Here, we report a general supramolecular coassembly approach for the fabrication of UC-CP...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 15; no. 2; pp. 2753 - 2761
Main Authors Zhou, Minghao, Sang, Yutao, Jin, Xue, Chen, Sanxu, Guo, Junchen, Duan, Pengfei, Liu, Minghua
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 23.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Enormous attention has been paid to upconverted circularly polarized luminescence (UC-CPL). However, so far, chiral species are still needed in UC-CPL materials, either through the covalent or noncovalent bond. Here, we report a general supramolecular coassembly approach for the fabrication of UC-CPL systems from completely achiral components. We have found that an achiral C 3-symmetric molecule could form a chiral nanohelix through symmetry breaking, which could serve as a general helical platform to endow achiral guests with induced chirality and CPL activity. Two different photon upconversion systems, namely, triplet–triplet annihilation photon upconversion (TTA-UC) donor/acceptor pairs and inorganic lanthanide upconversion nanoparticles (UCNPs), are selected. When these two systems coassembled with the chiral nanohelix made from an achiral C 3-symmetric molecule, hybrid nanohelix structures formed and UC-CPL activity was induced. Through such an approach, we demonstrated that the fabrication of the UC-CPL materials does not require any chiral molecules. Moreover, we have shown that the polarization of UC-CPL can be tuned by the helicity of the nanohelix, which could be controlled through the seeded vortex. Our work provides a general approach for designing tunable UC-CPL materials from completely achiral motifs, which largely expands the research scope of the CPL materials.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.0c08539