Mini-batch optimized full waveform inversion with geological constrained gradient filtering
High computation cost and generating solutions without geological sense have hindered the wide application of Full Waveform Inversion (FWI). Source encoding technique is a way to dramatically reduce the cost of FWI but subject to fix-spread acquisition setup requirement and slow convergence for the...
Saved in:
Published in | Journal of applied geophysics Vol. 152; pp. 9 - 16 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2018
|
Online Access | Get full text |
Cover
Loading…
Summary: | High computation cost and generating solutions without geological sense have hindered the wide application of Full Waveform Inversion (FWI). Source encoding technique is a way to dramatically reduce the cost of FWI but subject to fix-spread acquisition setup requirement and slow convergence for the suppression of cross-talk. Traditionally, gradient regularization or preconditioning is applied to mitigate the ill-posedness. An isotropic smoothing filter applied on gradients generally gives non-geological inversion results, and could also introduce artifacts. In this work, we propose to address both the efficiency and ill-posedness of FWI by a geological constrained mini-batch gradient optimization method. The mini-batch gradient descent optimization is adopted to reduce the computation time by choosing a subset of entire shots for each iteration. By jointly applying the structure-oriented smoothing to the mini-batch gradient, the inversion converges faster and gives results with more geological meaning. Stylized Marmousi model is used to show the performance of the proposed method on realistic synthetic model.
•Mini-batch gradient can reduce the FWI computation cost by using a subset of the total shots for iteration;•Full waveform inversion with geological constrained gradient filtering can produce more geological meaningful results;•Jointly applying the geological constrained gradient filtering and the mini-batch optimization method is a way to improve efficiency and also reduce the ill-posedness of full waveform inversion. |
---|---|
ISSN: | 0926-9851 1879-1859 |
DOI: | 10.1016/j.jappgeo.2018.02.011 |