Novel approach to study diffusion of hydrogen bearing species in silicate glasses at low temperatures

Diffusion of hydrogen bearing species in glasses plays a significant role in numerous applications in commercial as well as scientific domains. The investigation of diffusion of water in glasses at low temperatures led to experimental and analytical difficulties in the past. We present a new approac...

Full description

Saved in:
Bibliographic Details
Published inChemical geology Vol. 562; p. 120037
Main Authors Bissbort, Thilo, Becker, Hans-Werner, Fanara, Sara, Chakraborty, Sumit
Format Journal Article
LanguageEnglish
Published Elsevier B.V 20.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Diffusion of hydrogen bearing species in glasses plays a significant role in numerous applications in commercial as well as scientific domains. The investigation of diffusion of water in glasses at low temperatures led to experimental and analytical difficulties in the past. We present a new approach that lets us overcome these complications. Diffusion couples of An50Di50 glass (mol %, NBO/T = 0.67) were produced by coating anhydrous glass substrates with thin films of hydrated glass (~200 nm, ~2 wt% H2O) using pulsed laser deposition (PLD). Bonding the diffusant to the glass matrix of the thin film instead of using free water at the interface during experiments precludes other glass altering processes such as dissolution and precipitation. This allows us to confidently interpret the measured profiles to be a result of diffusion only. Nanoscale concentration profiles that result from diffusion at low temperatures on experimentally feasible time scales were measured with the Nuclear Resonance Reaction Analysis (NRRA, 1H(15N,αγ)12C). The non-destructive nature of NRRA enables us to observe and better understand the evolution of diffusion profiles with time within one sample. Evaluation of the sample quality by EPMA, SEM, optical microscopy, Rutherford backscattering spectroscopy (RBS), and NRRA was performed and confirmed the suitability of the samples for diffusion studies. Experiments at 1 atm in a box furnace and at 2 kbar in a CSPV (pressure medium = water) and an IHPV (pressure medium = Argon) prove that the diffusion couples can be used under various experimental conditions. We present diffusion profiles that were measured in experiments carried out in these devices and discuss the distinct features of each that result from different boundary conditions in the experiments.
ISSN:0009-2541
1872-6836
DOI:10.1016/j.chemgeo.2020.120037