Biomimetic Turbinate-like Artificial Nose for Hydrogen Detection Based on 3D Porous Laser-Induced Graphene

Inspired by the turbinate structure in the olfaction system of a dog, a biomimetic artificial nose based on 3D porous laser-induced graphene (LIG) decorated with palladium (Pd) nanoparticles (NPs) has been developed for room-temperature hydrogen (H2) detection. A 3D porous biomimetic turbinate-like...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 11; no. 27; pp. 24386 - 24394
Main Authors Zhu, Jianxiong, Cho, Minkyu, Li, Yutao, Cho, Incheol, Suh, Ji-Hoon, Orbe, Dionisio Del, Jeong, Yongrok, Ren, Tian-Ling, Park, Inkyu
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 10.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Inspired by the turbinate structure in the olfaction system of a dog, a biomimetic artificial nose based on 3D porous laser-induced graphene (LIG) decorated with palladium (Pd) nanoparticles (NPs) has been developed for room-temperature hydrogen (H2) detection. A 3D porous biomimetic turbinate-like network of graphene was synthesized by simply irradiating an infrared laser beam onto a polyimide substrate, which could further be transferred onto another flexible substrate such as polyethylene terephthalate (PET) to broaden its application. The sensing mechanism is based on the catalytic effect of the Pd NPs on the crystal defect of the biomimetic LIG turbinate-like microstructure, which allows facile adsorption and desorption of the nonpolar H2 molecules. The sensor demonstrated an approximately linear sensing response to H2 concentration. Compared to chemical vapor-deposited (CVD) graphene-based gas sensors, the biomimetic turbinate-like microstructure LIG-gas sensor showed ∼1 time higher sensing performance with much simpler and lower-cost fabrication. Furthermore, to expand the potential applications of the biomimetic sensor, we modulated the resistance of the biomimetic LIG sensor by varying laser sweeping gaps and also demonstrated a well-transferred LIG layer onto transparent substrates. Moreover, the LIG sensor showed good mechanical flexibility and robustness for potential wearable and flexible device applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.9b04495