Silicide Coating Fabricated by HAPC/SAPS Combination to Protect Niobium Alloy from Oxidation

A combined silicide coating, including inner NbSi2 layer and outer MoSi2 layer, was fabricated through a two-step method. The NbSi2 was deposited on niobium alloy by halide activated pack cementation (HAPC) in the first step. Then, supersonic atmospheric plasma spray (SAPS) was applied to obtain the...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 8; no. 24; pp. 15838 - 15847
Main Authors Sun, Jia, Fu, Qian-Gang, Guo, Li-Ping, Wang, Lu
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A combined silicide coating, including inner NbSi2 layer and outer MoSi2 layer, was fabricated through a two-step method. The NbSi2 was deposited on niobium alloy by halide activated pack cementation (HAPC) in the first step. Then, supersonic atmospheric plasma spray (SAPS) was applied to obtain the outer MoSi2 layer, forming a combined silicide coating. Results show that the combined coating possessed a compact structure. The phase constitution of the combined coating prepared by HAPC and SAPS was NbSi2 and MoSi2, respectively. The adhesion strength of the combined coating increased nearly two times than that for single sprayed coating, attributing to the rougher surface of the HAPC-bond layer whose roughness increased about three times than that of the grit-blast substrate. After exposure at 1200 °C in air, the mass increasing rate for single HAPC-silicide coating was 3.5 mg/cm2 because of the pest oxidation of niobium alloy, whereas the combined coating displayed better oxidation resistance with a mass gain of only 1.2 mg/cm2. Even more, the combined coating could significantly improve the antioxidation ability of niobium based alloy at 1500 °C. The good oxidation resistance of the combined silicide coating was attributed to the integrity of the combined coating and the continuous SiO2 protective scale provided by the oxidation of MoSi2.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.6b04599