Electrically Conducting and Mechanically Strong Graphene–Polylactic Acid Composites for 3D Printing

The advent of 3D printing has had a disruptive impact in manufacturing and can potentially revolutionize industrial fields. Thermoplastic materials printable into complex structures are widely employed for 3D printing. Polylactic acid (PLA) is among the most promising polymers used for 3D printing,...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 11; no. 12; pp. 11841 - 11848
Main Authors Kim, Mirae, Jeong, Jae Hwan, Lee, Jong-Young, Capasso, Andrea, Bonaccorso, Francesco, Kang, Seok-Hyeon, Lee, Young-Kook, Lee, Gwan-Hyoung
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The advent of 3D printing has had a disruptive impact in manufacturing and can potentially revolutionize industrial fields. Thermoplastic materials printable into complex structures are widely employed for 3D printing. Polylactic acid (PLA) is among the most promising polymers used for 3D printing, owing to its low cost, biodegradability, and nontoxicity. However, PLA is electrically insulating and mechanically weak; this limits its use in a variety of 3D printing applications. This study demonstrates a straightforward and environment-friendly method to fabricate conductive and mechanically reinforced PLA composites by incorporating graphene nanoplatelets (GNPs). To fully utilize the superior electrical and mechanical properties of graphene, liquid-exfoliated GNPs are dispersed in isopropyl alcohol without the addition of any surfactant and combined with PLA dissolved in chloroform. The GNP–PLA composites exhibit improved mechanical properties (improvement in tensile strength by 44% and maximum strain by 57%) even at a low GNP threshold concentration of 2 wt %. The GNP–PLA composites also exhibit an electrical conductivity of over 1 mS/cm at >1.2 wt %. The GNP–PLA composites can be 3D-printed into various features with electrical conductivity and mechanical flexibility. This work presents a new direction toward advanced 3D printing technology by providing higher flexibility in designing multifunctional 3D printed features.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.9b03241