Mimicking the Composition and Structure of the Osteochondral Tissue to Fabricate a Heterogeneous Three-Layer Scaffold for the Repair of Osteochondral Defects

Heterogeneous three-layer scaffolds were fabricated by mimicking the biochemical composition and structure of the hyaline cartilage, calcified cartilage, and subchondral bone of the osteochondral tissue for the repair of osteochondral defects. The hyaline cartilage layer was composed of collagen I (...

Full description

Saved in:
Bibliographic Details
Published inACS applied bio materials Vol. 5; no. 2; pp. 734 - 746
Main Authors Zhou, Hongmei, Yuan, Lun, Xu, Zhilang, Yi, Xueling, Wu, Xiao, Mu, Changdao, Ge, Liming, Li, Defu
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 21.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Heterogeneous three-layer scaffolds were fabricated by mimicking the biochemical composition and structure of the hyaline cartilage, calcified cartilage, and subchondral bone of the osteochondral tissue for the repair of osteochondral defects. The hyaline cartilage layer was composed of collagen I (50.0 wt %) and sodium hyaluronate (50.0 wt %). The calcified cartilage layer and subchondral bone layer were composed of collagen I, sodium hyaluronate, and nanohydroxyapatite with different proportions. N-Hydroxysuccinimide/N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride was used to mediate the crosslinking reaction of the amine groups of collagen with carboxyl groups of sodium hyaluronate. The hyaline cartilage layer and calcified cartilage layer were designed as dense structures, while the subchondral bone layer was designed as a relatively loose structure by adjusting the crosslinking degree. The scaffolds displayed a uniform and interconnected porous structure and possessed a high porosity over 85%, which were conducive to cellular adhesion and proliferation. The scaffolds could remain at 50–75% after 30 days of degradation owing to crosslinking, providing enough time for the regeneration of the osteochondral tissue. Especially, the hyaline cartilage layer and calcified cartilage layer preferred to induce the proliferation of chondrocytes, while the subchondral bone layer was more conducive to the proliferation of osteoblasts. In conclusion, the heterogeneous multilayer scaffolds could serve as implant materials for osteochondral reconstruction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2576-6422
2576-6422
DOI:10.1021/acsabm.1c01152