MMP2-Targeting and Redox-Responsive PEGylated Chlorin e6 Nanoparticles for Cancer Near-Infrared Imaging and Photodynamic Therapy

A unique matrix metalloproteinase 2-targeted photosensitizer delivery platform was developed in this study for tumor-targeting imaging and photodynamic therapy. The model photosensitizer therapeutic agent chlorin e6 (Ce6) was first covalently conjugated with matrix metalloproteinase 2-cleavable poly...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 8; no. 2; pp. 1447 - 1457
Main Authors Hou, Wenxiu, Xia, Fangfang, Alves, Carla S, Qian, Xiaoqing, Yang, Yuming, Cui, Daxiang
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 20.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A unique matrix metalloproteinase 2-targeted photosensitizer delivery platform was developed in this study for tumor-targeting imaging and photodynamic therapy. The model photosensitizer therapeutic agent chlorin e6 (Ce6) was first covalently conjugated with matrix metalloproteinase 2-cleavable polypeptide and then modified with polyethylene glycol via a redox-responsive cleavable disulfide linker. The resultant matrix metalloproteinase 2-cleavable polypeptide modified PEGylated Ce6 (PEG-SS-Ce6-MMP2) nanoparticles, which formed via self-assembly, were observed to be monodisperse and significantly stable in aqueous solution. In addition, owing to their cellular redox-responsiveness at the cleavable disulfide linker, the PEG-SS-Ce6-MMP2 nanoparticles were able to release Ce6 rapidly. Despite displaying enhanced intracellular internalization, the synthesized PEG-SS-Ce6-MMP2 nanoparticles did not compromise their phototoxic effects toward A549 cancer cells when compared with free Ce6 and PEGylated Ce6 nanoparticles. In vivo experiments further revealed that, in contrast with the free Ce6 or with the PEGylated Ce6 nanoparticles, the PEG-SS-Ce6-MMP2 nanoparticles showed a remarkable increase in tumor-targeting ability and a significantly improved photodynamic therapeutic efficiency in A549 tumor-bearing mice. These results suggest that the PEG-SS-Ce6-MMP2 nanoparticles hold great potential for tumor-targeting imaging and photodynamic therapy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.5b10772