Prediction of maximum scour depth around piers with debris accumulation using EPR, MT, and GEP models

Pier scour phenomena in the presence of debris accumulation have attracted the attention of engineers to present a precise prediction of the local scour depth. Most experimental studies of pier scour depth with debris accumulation have been performed to find an accurate formula to predict the local...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydroinformatics Vol. 18; no. 5; pp. 867 - 884
Main Authors Najafzadeh, Mohammad, Rezaie Balf, Mohammad, Rashedi, Esmat
Format Journal Article
LanguageEnglish
Published London IWA Publishing 01.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pier scour phenomena in the presence of debris accumulation have attracted the attention of engineers to present a precise prediction of the local scour depth. Most experimental studies of pier scour depth with debris accumulation have been performed to find an accurate formula to predict the local scour depth. However, an empirical equation with appropriate capacity of validation is not available to evaluate the local scour depth. In this way, gene-expression programming (GEP), evolutionary polynomial regression (EPR), and model tree (MT) based formulations are used to develop to predict the scour depth around bridge piers with debris effects. Laboratory data sets utilized to perform models are collected from different literature. Effective parameters on the local scour depth include geometric characterizations of bridge piers and debris, physical properties of bed sediment, and approaching flow characteristics. The efficiency of the training stages for the GEP, MT, and EPR models are investigated. Performances of the testing results for these models are compared with the traditional approaches based on regression methods. The uncertainty prediction of the MT was quantified and compared with those of existing models. Also, sensitivity analysis was performed to assign effective parameters on the scour depth prediction.
AbstractList Pier scour phenomena in the presence of debris accumulation have attracted the attention of engineers to present a precise prediction of the local scour depth. Most experimental studies of pier scour depth with debris accumulation have been performed to find an accurate formula to predict the local scour depth. However, an empirical equation with appropriate capacity of validation is not available to evaluate the local scour depth. In this way, gene-expression programming (GEP), evolutionary polynomial regression (EPR), and model tree (MT) based formulations are used to develop to predict the scour depth around bridge piers with debris effects. Laboratory data sets utilized to perform models are collected from different literature. Effective parameters on the local scour depth include geometric characterizations of bridge piers and debris, physical properties of bed sediment, and approaching flow characteristics. The efficiency of the training stages for the GEP, MT, and EPR models are investigated. Performances of the testing results for these models are compared with the traditional approaches based on regression methods. The uncertainty prediction of the MT was quantified and compared with those of existing models. Also, sensitivity analysis was performed to assign effective parameters on the scour depth prediction.
Author Najafzadeh, Mohammad
Rezaie Balf, Mohammad
Rashedi, Esmat
Author_xml – sequence: 1
  givenname: Mohammad
  surname: Najafzadeh
  fullname: Najafzadeh, Mohammad
  organization: Department of Civil Engineering, Graduate University of Advanced Technology-Kerman, P.O. Box 76315-116, Kerman, Iran
– sequence: 2
  givenname: Mohammad
  surname: Rezaie Balf
  fullname: Rezaie Balf, Mohammad
  organization: Department of Civil Engineering, Graduate University of Advanced Technology-Kerman, P.O. Box 76315-116, Kerman, Iran
– sequence: 3
  givenname: Esmat
  surname: Rashedi
  fullname: Rashedi, Esmat
  organization: Department of Civil Engineering, Graduate University of Advanced Technology-Kerman, P.O. Box 76315-116, Kerman, Iran
BookMark eNp1kM9LwzAUx4NMcJtePQe8rjMvaZv2KGNOYeKQeS5pkrqMtplJi-6_N-s8CZ7eD76f9_h-J2jU2lYjdAtkTiFN73dH5eycEkjDTC_QGOI0iYCzeDT0ccQhhis08X5PCAWWwRjpjdPKyM7YFtsKN-LbNH2DvbS9w0ofuh0WzvatwgejncdfJmyULp3xWEjZN30tBrj3pv3Ay83bDL9sZ1gEYrXc4MYqXftrdFmJ2uub3zpF74_L7eIpWr-unhcP60gwRroor0RMq7xkWnAoOaNxpXNesZwkqeI84VxTKUqtFSnzjGc8lUChJCkQnmSyZFN0d757cPaz174r9sFHG14WkNMk5owQCKr5WSWd9d7pqjg40wh3LIAUpyiLIcriFGWYaQDiP4A03WC7c8LU_2E_Jep7Bw
CitedBy_id crossref_primary_10_1002_apj_2126
crossref_primary_10_1061_JOEEDU_EEENG_7766
crossref_primary_10_1016_j_jhydrol_2021_126100
crossref_primary_10_1061__ASCE_IR_1943_4774_0001402
crossref_primary_10_1016_j_rineng_2021_100326
crossref_primary_10_2166_hydro_2024_047
crossref_primary_10_1007_s40996_016_0025_0
crossref_primary_10_1002_clen_70003
crossref_primary_10_1007_s11269_017_1711_9
crossref_primary_10_1680_jbren_19_00045
crossref_primary_10_2166_ws_2022_233
crossref_primary_10_2166_nh_2017_283
crossref_primary_10_3390_w11040709
crossref_primary_10_3390_su15087016
crossref_primary_10_2166_ws_2017_041
crossref_primary_10_2166_hydro_2024_292
crossref_primary_10_1002_ird_2125
crossref_primary_10_2166_hydro_2024_051
crossref_primary_10_1155_2023_9715120
crossref_primary_10_1155_2023_3854295
crossref_primary_10_2166_ws_2018_084
crossref_primary_10_1016_j_ijsrc_2022_11_004
crossref_primary_10_2166_ws_2022_125
crossref_primary_10_1016_j_engappai_2023_106780
crossref_primary_10_3233_JIFS_240513
crossref_primary_10_1007_s00366_021_01370_2
crossref_primary_10_1680_jmaen_2017_10
crossref_primary_10_1016_j_jenvman_2024_120349
crossref_primary_10_1080_1064119X_2017_1355944
crossref_primary_10_2166_wst_2024_393
crossref_primary_10_2478_johh_2025_0004
crossref_primary_10_1080_1064119X_2021_1907635
crossref_primary_10_1080_0305215X_2016_1230207
crossref_primary_10_1080_15715124_2018_1437738
crossref_primary_10_1016_j_jhydrol_2016_11_058
crossref_primary_10_1080_09715010_2016_1235471
crossref_primary_10_1007_s40996_021_00608_9
crossref_primary_10_1080_09715010_2020_1846144
crossref_primary_10_1007_s42452_020_04124_9
crossref_primary_10_1007_s00500_019_03877_9
crossref_primary_10_1007_s11709_023_0943_4
crossref_primary_10_1007_s40996_020_00364_2
crossref_primary_10_1016_j_istruc_2023_105505
crossref_primary_10_1016_j_engstruct_2021_113815
crossref_primary_10_1080_1064119X_2022_2035025
crossref_primary_10_1016_j_jher_2019_11_002
crossref_primary_10_1007_s10661_022_10844_9
crossref_primary_10_2166_aqua_2018_021
crossref_primary_10_1016_j_amc_2017_06_012
crossref_primary_10_1016_j_oceaneng_2022_112838
crossref_primary_10_1155_2018_8328167
crossref_primary_10_3390_su12031063
crossref_primary_10_1007_s11269_017_1615_8
crossref_primary_10_3390_mca26010006
crossref_primary_10_1016_j_oceaneng_2019_04_013
crossref_primary_10_2166_nh_2018_050
crossref_primary_10_1007_s12205_017_1769_1
crossref_primary_10_3233_JIFS_221342
crossref_primary_10_1007_s40996_018_0129_9
crossref_primary_10_3390_w12051332
crossref_primary_10_1007_s11831_019_09382_4
crossref_primary_10_1016_j_wse_2018_07_001
crossref_primary_10_1080_09715010_2019_1617796
crossref_primary_10_1080_1064119X_2019_1595793
crossref_primary_10_1016_j_wri_2023_100228
crossref_primary_10_1007_s40996_018_0185_1
crossref_primary_10_1155_2021_5540284
crossref_primary_10_1016_j_jhydrol_2019_03_046
crossref_primary_10_1061__ASCE_IR_1943_4774_0001556
crossref_primary_10_3390_en17030697
crossref_primary_10_1080_19942060_2020_1861987
crossref_primary_10_2166_aqua_2020_138
crossref_primary_10_3233_JIFS_234125
crossref_primary_10_1007_s11356_020_11064_9
crossref_primary_10_1016_j_ijsrc_2022_07_008
crossref_primary_10_1016_j_oceaneng_2020_107111
crossref_primary_10_1080_1064119X_2017_1420113
crossref_primary_10_1155_2023_1827117
crossref_primary_10_1016_j_spc_2022_11_018
crossref_primary_10_3233_JIFS_242189
crossref_primary_10_1061__ASCE_WW_1943_5460_0000488
crossref_primary_10_1007_s00500_018_3517_y
crossref_primary_10_1007_s40996_018_0151_y
crossref_primary_10_1016_j_oceaneng_2023_114825
crossref_primary_10_1080_08839514_2021_2014185
crossref_primary_10_1007_s11269_024_03879_9
crossref_primary_10_2166_ws_2022_372
crossref_primary_10_1007_s00366_019_00802_4
crossref_primary_10_1061_JOEEDU_EEENG_7834
crossref_primary_10_1016_j_oceaneng_2022_113611
crossref_primary_10_2166_hydro_2019_008
crossref_primary_10_1080_09715010_2017_1372226
crossref_primary_10_1016_j_agrformet_2019_107647
crossref_primary_10_1016_j_oceaneng_2018_06_035
crossref_primary_10_2166_hydro_2021_138
crossref_primary_10_1007_s11356_018_1975_5
crossref_primary_10_1007_s40899_017_0104_9
crossref_primary_10_1007_s40996_019_00332_5
Cites_doi 10.2166/hydro.2006.020b
10.1016/j.oceaneng.2006.07.003
10.1016/j.advwatres.2015.06.012
10.3808/jei.201400287
10.2166/hydro.2009.017
10.3808/jei.201400274
10.3808/jei.201400277
10.3808/jei.201400261
10.1016/j.oceaneng.2015.01.014
10.1016/j.jhydrol.2015.03.016
10.1061/(ASCE)HY.1943-7900.0000289
10.1007/s00521-012-1258-x
10.2166/hydro.2010.032
10.1016/j.oceaneng.2011.07.012
10.1016/j.jhydrol.2012.02.018
10.1002/9781118625590
10.1162/106365600568158
10.1016/j.apor.2010.11.002
10.2166/hydro.2012.175
10.2166/hydro.2015.095
10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
10.1016/j.envsoft.2005.12.021
10.1061/(ASCE)HY.1943-7900.0000340
10.1680/maen.2012.165.1.31
10.1002/clen.200800009
10.1016/j.engappai.2012.12.011
10.1016/j.envsoft.2010.10.013
10.1016/j.engappai.2010.09.010
10.2166/hydro.2010.107
10.1016/j.apor.2003.06.001
10.1007/s11269-015-0962-6
10.1002/(SICI)1096-9837(199707)22:7<669::AID-ESP740>3.0.CO;2-L
10.1016/j.compgeo.2009.07.006
10.1016/j.jhydrol.2012.06.034
10.1080/00221680903568592
10.1061/41147(392)85
10.1016/j.jhydrol.2015.09.028
10.1016/j.compstruc.2013.06.012
10.1016/j.envsoft.2005.12.026
10.1007/s11269-013-0506-x
10.1061/(ASCE)HY.1943-7900.0000550
10.1002/qsar.200390007
10.1061/(ASCE)0733-9429(1992)118:9(1306)
10.1016/j.engappai.2015.07.019
10.1061/(ASCE)HY.1943-7900.0000133
10.1016/j.jhydrol.2013.10.034
10.1016/j.cageo.2011.04.015
10.1016/S1001-6279(11)60081-4
10.1016/j.jhydrol.2009.03.038
10.1016/j.engappai.2006.06.012
10.1016/j.jhydrol.2012.05.033
10.2166/hydro.2010.029
10.1061/(ASCE)PS.1949-1204.0000153
10.1007/s11269-009-9535-x
ContentType Journal Article
Copyright Copyright IWA Publishing Sep 2016
Copyright_xml – notice: Copyright IWA Publishing Sep 2016
DBID AAYXX
CITATION
7QH
7UA
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
L.G
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
DOI 10.2166/hydro.2016.212
DatabaseName CrossRef
Aqualine
Water Resources Abstracts
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1465-1734
EndPage 884
ExternalDocumentID 10_2166_hydro_2016_212
GroupedDBID 0R~
4.4
5GY
7XC
8CJ
8FE
8FH
AAJMC
AAJVE
AAYOK
AAYXX
ABFYC
ABLGR
ACGFO
AECGI
AENEX
AEUYN
AFKRA
AFRAH
AJXRC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BENPR
BHPHI
BKSAR
CCPQU
CITATION
CS3
D1J
DU5
EBS
EJD
GEUZO
GROUPED_DOAJ
H13
HCIFZ
HFPTO
HZ~
L7B
O9-
OK1
P2P
PATMY
PCBAR
PHGZM
PHGZT
PYCSY
R0Z
RHI
~02
7QH
7UA
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
L.G
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-a330t-9fa42f9b3ea71b7324fe97f39056d77577e2cabeed0b987876c121b0610758cb3
IEDL.DBID BENPR
ISSN 1464-7141
IngestDate Fri Jul 25 10:12:29 EDT 2025
Tue Jul 01 04:10:29 EDT 2025
Thu Apr 24 22:57:18 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a330t-9fa42f9b3ea71b7324fe97f39056d77577e2cabeed0b987876c121b0610758cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://iwaponline.com/jh/article-pdf/18/5/867/390550/jh0180867.pdf
PQID 1925473001
PQPubID 2044529
PageCount 18
ParticipantIDs proquest_journals_1925473001
crossref_primary_10_2166_hydro_2016_212
crossref_citationtrail_10_2166_hydro_2016_212
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-1
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-1
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of hydroinformatics
PublicationYear 2016
Publisher IWA Publishing
Publisher_xml – name: IWA Publishing
References Ahangar-Asr (2020032612303699300_HYDRO-D-15-00212C1) 2011; 37
Azamathulla (2020032612303699300_HYDRO-D-15-00212C3a) 2010; 136
Draper (2020032612303699300_HYDRO-D-15-00212C15) 1998
Lopez (2020032612303699300_HYDRO-D-15-00212C41) 2011; 414–415
Guven (2020032612303699300_HYDRO-D-15-00212C29) 2008; 36
Lagasse (2020032612303699300_HYDRO-D-15-00212C36) 2010
Savic (2020032612303699300_HYDRO-D-15-00212C57) 2006; 159
Azamathulla (2020032612303699300_HYDRO-D-15-00212C3) 2012; 434–435
Haykin (2020032612303699300_HYDRO-D-15-00212C31) 1999
Azamathulla (2020032612303699300_HYDRO-D-15-00212C2) 2012; 460–461
Zhang (2020032612303699300_HYDRO-D-15-00212C70a) 2014; 24
Azamathulla (2020032612303699300_HYDRO-D-15-00212C4) 2012; 8
Franzetti (2020032612303699300_HYDRO-D-15-00212C23a) 2011; 137
Giustolisi (2020032612303699300_HYDRO-D-15-00212C28a) 2007; 5
Singh (2020032612303699300_HYDRO-D-15-00212C59) 2009; 24
Rezania (2020032612303699300_HYDRO-D-15-00212C53) 2010; 37
Shiri (2020032612303699300_HYDRO-D-15-00212C58) 2014; 508
Tropsha (2020032612303699300_HYDRO-D-15-00212C62) 2003; 22
Sattar (2020032612303699300_HYDRO-D-15-00212C55) 2014; 5
2020032612303699300_HYDRO-D-15-00212C14
Bateni (2020032612303699300_HYDRO-D-15-00212C8) 2007; 20
Wu (2020032612303699300_HYDRO-D-15-00212C66) 2009; 372
Bateni (2020032612303699300_HYDRO-D-15-00212C7) 2007; 34
Xu (2020032612303699300_HYDRO-D-15-00212C67a) 2014; 24
Zahmatkesh (2020032612303699300_HYDRO-D-15-00212C69) 2015; 83
Briaud (2020032612303699300_HYDRO-D-15-00212C11) 2006
Ismail (2020032612303699300_HYDRO-D-15-00212C32) 2013; 29
Braudrick (2020032612303699300_HYDRO-D-15-00212C10) 1997; 22
Rahimikhoob (2020032612303699300_HYDRO-D-15-00212C51) 2014; 28
Reed (2020032612303699300_HYDRO-D-15-00212C52) 2007; 22
Pagliara (2020032612303699300_HYDRO-D-15-00212C47) 2011; 137
Giustolisi (2020032612303699300_HYDRO-D-15-00212C28) 2009; 11
Sattar (2020032612303699300_HYDRO-D-15-00212C56) 2015; 524
Ghazanfari-Hashemi (2020032612303699300_HYDRO-D-15-00212C25) 2011; 13
Wang (2020032612303699300_HYDRO-D-15-00212C64) 1997
Ferreria (2020032612303699300_HYDRO-D-15-00212C23) 2006
Pagliara (2020032612303699300_HYDRO-D-15-00212C46) 2010; 48
Wang (2020032612303699300_HYDRO-D-15-00212C65) 2015; 29
Giustolisi (2020032612303699300_HYDRO-D-15-00212C27) 2006; 8
Bradley (2020032612303699300_HYDRO-D-15-00212C9) 2005
Chau (2020032612303699300_HYDRO-D-15-00212C12) 2010; 12
Gholami (2020032612303699300_HYDRO-D-15-00212C26) 2015; 529
Najafzadeh (2020032612303699300_HYDRO-D-15-00212C44) 2014; 24
Taormina (2020032612303699300_HYDRO-D-15-00212C61) 2015; 45
Jozsa (2020032612303699300_HYDRO-D-15-00212C32a) 2014; 24
Pareto (2020032612303699300_HYDRO-D-15-00212C49) 1896
Laucelli (2020032612303699300_HYDRO-D-15-00212C39) 2012
Etemad-Shahidi (2020032612303699300_HYDRO-D-15-00212C18) 2012; 138
Najafzadeh (2020032612303699300_HYDRO-D-15-00212C43) 2015; 99
Chen (2020032612303699300_HYDRO-D-15-00212C13) 2015; 17
Etemad-Shahidi (2020032612303699300_HYDRO-D-15-00212C17) 2011; 38
Pagliara (2020032612303699300_HYDRO-D-15-00212C48) 2011; 26
Etemad-Shahidi (2020032612303699300_HYDRO-D-15-00212C20) 2011; 33
2020032612303699300_HYDRO-D-15-00212C37
Miao (2020032612303699300_HYDRO-D-15-00212C42a) 2014; 24
El-Baroudy (2020032612303699300_HYDRO-D-15-00212C16) 2010; 12
Shiri (2020032612303699300_HYDRO-D-15-00212C57a) 2011; 37
Ferreria (2020032612303699300_HYDRO-D-15-00212C22) 2001; 13
Zevenbergen (2020032612303699300_HYDRO-D-15-00212C70) 2006
Newcombe (2020032612303699300_HYDRO-D-15-00212C45) 1998; 17
Sok (2020032612303699300_HYDRO-D-15-00212C60) 2015
Kambekar (2020032612303699300_HYDRO-D-15-00212C33) 2003; 25
Laucelli (2020032612303699300_HYDRO-D-15-00212C38) 2011; 26
Laursen (2020032612303699300_HYDRO-D-15-00212C40) 1956
Zahmatkesh (2020032612303699300_HYDRO-D-15-00212C67c) 2014; 20
Zahmatkesh (2020032612303699300_HYDRO-D-15-00212C67b) 2014
Rezania (2020032612303699300_HYDRO-D-15-00212C54) 2011; 24
Lagasse (2020032612303699300_HYDRO-D-15-00212C35) 2009
Faramarzi (2020032612303699300_HYDRO-D-15-00212C21) 2014; 137
Quinlan (2020032612303699300_HYDRO-D-15-00212C50) 1992
Ghaemi (2020032612303699300_HYDRO-D-15-00212C24) 2013; 15
Kashid (2020032612303699300_HYDRO-D-15-00212C34) 2012; 454–455
Melville (2020032612303699300_HYDRO-D-15-00212C42) 1992; 118
Guven (2020032612303699300_HYDRO-D-15-00212C30) 2012; 165
Van Veldhuizen (2020032612303699300_HYDRO-D-15-00212C63) 2000; 8
References_xml – volume: 8
  start-page: 207
  year: 2006
  ident: 2020032612303699300_HYDRO-D-15-00212C27
  article-title: A symbolic data-driven technique based on evolutionary polynomial regression
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2006.020b
– volume: 34
  start-page: 1344
  year: 2007
  ident: 2020032612303699300_HYDRO-D-15-00212C7
  article-title: Estimation of pile group scour using adaptive neuro-fuzzy approach
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2006.07.003
– volume: 37
  start-page: 1692
  year: 2011
  ident: 2020032612303699300_HYDRO-D-15-00212C57a
  article-title: Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations
  publication-title: J. Cageo.
– volume: 83
  start-page: 405
  year: 2015
  ident: 2020032612303699300_HYDRO-D-15-00212C69
  article-title: Uncertainty based modeling of rainfall-runoff: combined differential evolution adaptive metropolis (DREAM) and K-means clustering
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2015.06.012
– volume: 24
  start-page: 111
  issue: 2
  year: 2014
  ident: 2020032612303699300_HYDRO-D-15-00212C32a
  article-title: Sediment flux and its environmental implications
  publication-title: J. Environ. Inform.
  doi: 10.3808/jei.201400287
– volume: 11
  start-page: 225
  year: 2009
  ident: 2020032612303699300_HYDRO-D-15-00212C28
  article-title: Advances in data-driven analyses and modelling using EPR-MOGA
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2009.017
– volume: 24
  start-page: 52
  issue: 1
  year: 2014
  ident: 2020032612303699300_HYDRO-D-15-00212C70a
  article-title: An Inexact Two-Stage Water Quality Management Model for Supporting Sustainable Development in a Rural System
  publication-title: Journal of Environmental Informatics
  doi: 10.3808/jei.201400274
– volume: 24
  start-page: 11
  issue: 1
  year: 2014
  ident: 2020032612303699300_HYDRO-D-15-00212C42a
  article-title: Planning water resources systems under uncertainty using an interval-fuzzy de novo programming method
  publication-title: J. Environ. Informat.
  doi: 10.3808/jei.201400277
– volume: 24
  start-page: 101
  issue: 2
  year: 2014
  ident: 2020032612303699300_HYDRO-D-15-00212C67a
  article-title: A two-stage fuzzy chance-constrained model for solid waste allocation planning
  publication-title: J. Environ. Inform.
  doi: 10.3808/jei.201400261
– volume: 99
  start-page: 85
  year: 2015
  ident: 2020032612303699300_HYDRO-D-15-00212C43
  article-title: Neuro-fuzzy GMDH systems based evolutionary algorithms to predict scour pile groups in clear water conditions
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2015.01.014
– volume: 524
  start-page: 587
  year: 2015
  ident: 2020032612303699300_HYDRO-D-15-00212C56
  article-title: Gene expression models for prediction of longitudinal dispersion coefficient in streams
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.03.016
– volume: 137
  start-page: 254
  year: 2011
  ident: 2020032612303699300_HYDRO-D-15-00212C47
  article-title: Influence of wood debris accumulation on bridge pier scour
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)HY.1943-7900.0000289
– volume: 24
  start-page: 629
  year: 2014
  ident: 2020032612303699300_HYDRO-D-15-00212C44
  article-title: Prediction of pipeline scour depth in clear-water and live-bed conditions using group method of data handling
  publication-title: Neural Comput. Appl
  doi: 10.1007/s00521-012-1258-x
– volume: 12
  start-page: 458
  issue: 4
  year: 2010
  ident: 2020032612303699300_HYDRO-D-15-00212C12
  article-title: A hybrid model coupled with singular spectrum analysis for daily rainfall prediction
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2010.032
– start-page: 1
  year: 2015
  ident: 2020032612303699300_HYDRO-D-15-00212C60
  article-title: A study on the effects of debris accumulation at sacrificial piles on bridge pier scour: I. Experimental results
  publication-title: Korean Soc. Civil Eng.
– volume-title: Cours D'Economie Politique
  year: 1896
  ident: 2020032612303699300_HYDRO-D-15-00212C49
– volume: 38
  start-page: 1522
  year: 2011
  ident: 2020032612303699300_HYDRO-D-15-00212C17
  article-title: Model tree approach for prediction of pile groups scour due to waves
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2011.07.012
– volume: 434–435
  start-page: 142
  year: 2012
  ident: 2020032612303699300_HYDRO-D-15-00212C3
  article-title: Gene expression programming for transverse mixing coefficient
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.02.018
– volume-title: Applied Regression Analysis
  year: 1998
  ident: 2020032612303699300_HYDRO-D-15-00212C15
  doi: 10.1002/9781118625590
– volume: 8
  start-page: 125
  year: 2000
  ident: 2020032612303699300_HYDRO-D-15-00212C63
  article-title: Multiobjective evolutionary algorithms analyzing the state-of-the-art
  publication-title: Evolutionary Computat.
  doi: 10.1162/106365600568158
– volume-title: Gene-expression Programming: Mathematical Modeling by an Artificial Intelligence
  year: 2006
  ident: 2020032612303699300_HYDRO-D-15-00212C23
– year: 1956
  ident: 2020032612303699300_HYDRO-D-15-00212C40
– year: 1997
  ident: 2020032612303699300_HYDRO-D-15-00212C64
  article-title: Induction of model trees for predicting continuous classes
– volume: 33
  start-page: 54
  year: 2011
  ident: 2020032612303699300_HYDRO-D-15-00212C20
  article-title: Prediction of wave-induced scour depth under submarine pipelines using machine learning approach
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2010.11.002
– volume: 15
  start-page: 516
  year: 2013
  ident: 2020032612303699300_HYDRO-D-15-00212C24
  article-title: Estimation of current-induced pile groups scour using a rule based method
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2012.175
– start-page: 343
  year: 1992
  ident: 2020032612303699300_HYDRO-D-15-00212C50
  article-title: Learning with continuous classes
– volume: 17
  start-page: 733
  issue: 5
  year: 2015
  ident: 2020032612303699300_HYDRO-D-15-00212C13
  article-title: A novel hybrid neural network based on continuity equation and fuzzy pattern-recognition for downstream daily river discharge forecasting
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2015.095
– volume: 17
  start-page: 857
  issue: 8
  year: 1998
  ident: 2020032612303699300_HYDRO-D-15-00212C45
  article-title: Two-sided confidence intervals for the single proportion: comparison of seven methods
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
– volume: 159
  start-page: 111
  year: 2006
  ident: 2020032612303699300_HYDRO-D-15-00212C57
  article-title: Modelling sewers failure using evolutionary computing
  publication-title: Proc. ICE, Water Manage.
– volume: 22
  start-page: 683
  year: 2007
  ident: 2020032612303699300_HYDRO-D-15-00212C52
  article-title: Using interactive archives in evolutionary multiobjective optimization: a case study for long-term groundwater monitoring design
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2005.12.021
– volume: 137
  start-page: 615
  year: 2011
  ident: 2020032612303699300_HYDRO-D-15-00212C23a
  article-title: Hydraulic design and preliminary performance evaluation of countermeasure against debris accumulation and resulting local pier scour on River Po in Italy
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)HY.1943-7900.0000340
– volume: 165
  start-page: 31
  year: 2012
  ident: 2020032612303699300_HYDRO-D-15-00212C30
  article-title: Predicting wave-induced scour around a circular pile
  publication-title: Maritime Eng.
  doi: 10.1680/maen.2012.165.1.31
– volume: 36
  start-page: 905
  year: 2008
  ident: 2020032612303699300_HYDRO-D-15-00212C29
  article-title: Genetic programming based empirical model for daily reference evapotranspiration estimation
  publication-title: Clean Soil Air Water
  doi: 10.1002/clen.200800009
– volume: 29
  start-page: 1540
  year: 2013
  ident: 2020032612303699300_HYDRO-D-15-00212C32
  article-title: Predictions of bridge scour: application of a feed-forward neural network with an adaptive activation function
  publication-title: Eng. Appl. Artificial Intell.
  doi: 10.1016/j.engappai.2012.12.011
– volume: 26
  start-page: 498
  year: 2011
  ident: 2020032612303699300_HYDRO-D-15-00212C38
  article-title: Scour depth modelling by a multi-objective evolutionary paradigm
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2010.10.013
– volume: 24
  start-page: 142
  year: 2011
  ident: 2020032612303699300_HYDRO-D-15-00212C54
  article-title: An evolutionary based approach for assessment of earthquake-induced soil liquefaction and lateral displacement
  publication-title: Eng. Appl. Artificial Intell.
  doi: 10.1016/j.engappai.2010.09.010
– volume: 13
  start-page: 609
  year: 2011
  ident: 2020032612303699300_HYDRO-D-15-00212C25
  article-title: Prediction of pile group scour in waves using support vector machines and ANN
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2010.107
– volume: 25
  start-page: 225
  year: 2003
  ident: 2020032612303699300_HYDRO-D-15-00212C33
  article-title: Estimation of pile group scour using neural networks
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2003.06.001
– volume: 29
  start-page: 2655
  issue: 8
  year: 2015
  ident: 2020032612303699300_HYDRO-D-15-00212C65
  article-title: Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-015-0962-6
– volume: 22
  start-page: 669
  year: 1997
  ident: 2020032612303699300_HYDRO-D-15-00212C10
  article-title: Dynamics of wood transport in streams: a flume experiment
  publication-title: Earth Surf. Process. Landforms
  doi: 10.1002/(SICI)1096-9837(199707)22:7<669::AID-ESP740>3.0.CO;2-L
– volume: 37
  start-page: 82
  year: 2010
  ident: 2020032612303699300_HYDRO-D-15-00212C53
  article-title: Evaluation of liquefaction potential based on CPT results using evolutionary polynomial regression
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2009.07.006
– volume: 460–461
  start-page: 156
  year: 2012
  ident: 2020032612303699300_HYDRO-D-15-00212C2
  article-title: Gene expression programming for prediction of scour depth downstream of sills
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.06.034
– ident: 2020032612303699300_HYDRO-D-15-00212C14
– volume: 20
  start-page: 05014022
  issue: 7
  year: 2014
  ident: 2020032612303699300_HYDRO-D-15-00212C67c
  article-title: Low-impact development practices to mitigate climate change effects on urban stormwater runoff: case study of New York City
  publication-title: J. Irrig. Drain Eng.
– year: 2012
  ident: 2020032612303699300_HYDRO-D-15-00212C39
  article-title: EPR-MOGA-XL: an Excel based paradigm to enhance transfer of research achievements on data-driven modeling
– volume: 48
  start-page: 3
  issue: 1
  year: 2010
  ident: 2020032612303699300_HYDRO-D-15-00212C46
  article-title: Temporal scour evolution at bridge piers: effect of wood debris roughness and porosity
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221680903568592
– year: 2010
  ident: 2020032612303699300_HYDRO-D-15-00212C36
  article-title: Impacts of debris on bridge pier scour
  doi: 10.1061/41147(392)85
– year: 2006
  ident: 2020032612303699300_HYDRO-D-15-00212C70
  article-title: Effects of debris on bridge pier scour
– volume: 529
  start-page: 1060
  issue: 3
  year: 2015
  ident: 2020032612303699300_HYDRO-D-15-00212C26
  article-title: Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.09.028
– volume: 13
  start-page: 87
  issue: 2
  year: 2001
  ident: 2020032612303699300_HYDRO-D-15-00212C22
  article-title: Gene-expression programming. a new adaptive algorithm for solving problems
  publication-title: Complex Systems
– ident: 2020032612303699300_HYDRO-D-15-00212C37
  doi: 10.1061/41147(392)85
– volume: 137
  start-page: 63
  year: 2014
  ident: 2020032612303699300_HYDRO-D-15-00212C21
  article-title: An EPR-based self-learning approach to material modeling
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2013.06.012
– volume: 5
  start-page: 674
  year: 2007
  ident: 2020032612303699300_HYDRO-D-15-00212C28a
  article-title: A multi-model approach to analysis of environmental phenomena
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2005.12.026
– volume: 28
  start-page: 657
  year: 2014
  ident: 2020032612303699300_HYDRO-D-15-00212C51
  article-title: Comparison between M5 model tree and neural networks for estimating reference evapotranspiration in an arid environment
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-013-0506-x
– volume: 8
  start-page: 5045
  issue: 7B
  year: 2012
  ident: 2020032612303699300_HYDRO-D-15-00212C4
  article-title: Prediction of scour depth at culvert outlets using gene-expression programming
  publication-title: Int. J. Innovative Comput. Inform. Control
– start-page: 179
  volume-title: Debris Control Structures Evaluations and Countermeasures
  year: 2005
  ident: 2020032612303699300_HYDRO-D-15-00212C9
– volume: 138
  start-page: 542
  year: 2012
  ident: 2020032612303699300_HYDRO-D-15-00212C18
  article-title: Predicting longitudinal dispersion coefficient in natural streams using M5′ model tree
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)HY.1943-7900.0000550
– volume: 22
  start-page: 69
  issue: 1
  year: 2003
  ident: 2020032612303699300_HYDRO-D-15-00212C62
  article-title: The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models
  publication-title: QSAR Comb. Sci.
  doi: 10.1002/qsar.200390007
– volume: 118
  start-page: 1306
  year: 1992
  ident: 2020032612303699300_HYDRO-D-15-00212C42
  article-title: Bridge pier scour with debris accumulation
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)0733-9429(1992)118:9(1306)
– volume: 45
  start-page: 429
  year: 2015
  ident: 2020032612303699300_HYDRO-D-15-00212C61
  article-title: ANN-based interval forecasting of streamflow discharges using the LUBE method and MOFIPS
  publication-title: Eng. Appl. Artificial Intell.
  doi: 10.1016/j.engappai.2015.07.019
– volume: 136
  start-page: 165
  issue: 3
  year: 2010
  ident: 2020032612303699300_HYDRO-D-15-00212C3a
  article-title: Genetic programming to predict bridge pier scour
  publication-title: ASCE J. Hydraul. Eng.
  doi: 10.1061/(ASCE)HY.1943-7900.0000133
– volume: 508
  start-page: 1
  year: 2014
  ident: 2020032612303699300_HYDRO-D-15-00212C58
  article-title: Generalizability of gene expression programming-based approaches for estimating daily reference evapotranspiration in coastal stations of Iran
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.10.034
– volume: 37
  start-page: 1860
  year: 2011
  ident: 2020032612303699300_HYDRO-D-15-00212C1
  article-title: Modeling of permeability and compaction characteristics of soils using evolutionary polynomial regression
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2011.04.015
– volume: 26
  start-page: 121
  year: 2011
  ident: 2020032612303699300_HYDRO-D-15-00212C48
  article-title: Influence of large woody debris on sediment scour at bridge piers
  publication-title: Int. J. Sediment Res.
  doi: 10.1016/S1001-6279(11)60081-4
– volume: 372
  start-page: 80
  issue: 1–4
  year: 2009
  ident: 2020032612303699300_HYDRO-D-15-00212C66
  article-title: Methods to improve neural network performance in daily flows prediction
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.03.038
– year: 2014
  ident: 2020032612303699300_HYDRO-D-15-00212C67b
  article-title: Analysis of the effects of climate change on urban storm water runoff using statistically downscaled precipitation data and a change factor approach
  publication-title: J. Hydrol. Eng.
– volume: 20
  start-page: 401
  year: 2007
  ident: 2020032612303699300_HYDRO-D-15-00212C8
  article-title: Neural network and neuro-fuzzy assessments for scour depth around bridge piers
  publication-title: Eng. Appl. Artificial Intell.
  doi: 10.1016/j.engappai.2006.06.012
– volume: 454–455
  start-page: 26
  year: 2012
  ident: 2020032612303699300_HYDRO-D-15-00212C34
  article-title: Prediction of monthly rainfall on homogeneous monsoon regions of India based on large scale circulation patterns using Genetic Programming
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.05.033
– volume-title: Neural Networks: A Comprehensive Foundation
  year: 1999
  ident: 2020032612303699300_HYDRO-D-15-00212C31
– volume: 414–415
  start-page: 302
  year: 2011
  ident: 2020032612303699300_HYDRO-D-15-00212C41
  article-title: Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain)
  publication-title: J. Hydrol.
– year: 2006
  ident: 2020032612303699300_HYDRO-D-15-00212C11
  article-title: Scour at bridges due to debris accumulation: a review
– volume: 12
  start-page: 365
  issue: 4
  year: 2010
  ident: 2020032612303699300_HYDRO-D-15-00212C16
  article-title: Comparison of three data-driven techniques in modelling the evapotranspiration process
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2010.029
– volume: 5
  start-page: 4013011
  year: 2014
  ident: 2020032612303699300_HYDRO-D-15-00212C55
  article-title: Gene expression models for the prediction of longitudinal dispersion coefficients in transitional and turbulent pipe flow
  publication-title: J. Pipeline Syst. Eng. Pract.
  doi: 10.1061/(ASCE)PS.1949-1204.0000153
– volume: 24
  start-page: 2007
  year: 2009
  ident: 2020032612303699300_HYDRO-D-15-00212C59
  article-title: Estimation of mean annual flood in Indian catchments using backpropagation neural network and M5 model tree
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-009-9535-x
– start-page: 3967
  year: 2009
  ident: 2020032612303699300_HYDRO-D-15-00212C35
  article-title: Impacts of debris on bridge pier scour
SSID ssj0021381
Score 2.402573
Snippet Pier scour phenomena in the presence of debris accumulation have attracted the attention of engineers to present a precise prediction of the local scour depth....
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 867
SubjectTerms Accumulation
Bed load
Bridge piers
Bridges
Capacity
Debris
Depth
Detritus
Empirical equations
Floods
Flow characteristics
Formulations
Gene expression
Geometry
Informatics
Laboratories
Mathematical models
Neural networks
Parameter sensitivity
Parameters
Physical properties
Piers
Regression analysis
Scour
Scouring
Sensitivity analysis
Studies
Training
Title Prediction of maximum scour depth around piers with debris accumulation using EPR, MT, and GEP models
URI https://www.proquest.com/docview/1925473001
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagHWBBPEWhIA9ILLXaOG6cTAhQSoXUqqpaqVtkOw5Fog_6kOi_5y5xixhgdGJn-Bzfffad7yPkDhhEaJRUDAt9MGFDwXQjjJivlRCGK2MsRnQ73aA9FK-j5sgduC1dWuXWJuaGOp0ZPCOvAxNBmVywqg_zT4aqURhddRIa-6QMJjiEzVf5Ke72-rstl-fnMqVgDjDrUHhF2UbuBUF9vEkXePvPC6DNf7ul31Y5dzWtY3LkOCJ9LCb1hOzZ6Sk5cHLl480Zsb0FxlcQUzrL6ER9vU_WE7o0MJKmdr4aU7VAvSQ6R6Vrioet8ByT-yngsp44zS6KWe9vNO71a7QzqFEFI17iHs3lcZbnZNiKB89t5vQSmPL9xopFmRI8i7RvlfS0BKqU2UhmfgQkJ5WyKaXlRmnwig0dhbBSA-NxT4NHB94QGu1fkNJ0NrWXhKpUW59ngWeFETLQkWpkgutMaKVSrsMKYVu4EuOKiaOmxUcCmwqEN8nhTRBeaPMKud_1nxdlNP7sWd2in7jltEx-Jv_q_9fX5BA_VCSBVUlptVjbG2ANK33rfo1v6znCZQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB5BOcAFLeyuFpaHD6C9YNE4bpwcEOJRKI9WFSoSt2A7DkXaPrYPQf8Uv5GZPEAc2BtHJ7YP4_HMfPZ4PoAdjCBCq5XmVOiDSxdKbqphxH2jpbRCW-voRrfZChq38vKudjcHL-VbGEqrLG1iZqiTgaUz8n2MRIgmF63q4fAfJ9Youl0tKTRytbhysyeEbOODi1Nc310hzuqdkwYvWAW4Ruw-4VGqpUgj4zutPKMwoEhdpFLE_rUgUaqmlBNWG_QdVYOAHK2F9YRn0O-hdw2t8XHeeViQPkKZCiwc11vtmzeI5_kZLSqaH8pylF5eJlJ4QbDfnSUjem3oBdgWH93gRy-Qubazb7BcxKTsKFeiFZhz_VVYLOjRu7Pv4Nojus-hNWSDlPX082Nv2mNjiyNZ4oaTLtMj4mdiQ2LWZnS4i9_pMQHDdZj2Co4wRln2D6zevtljzc4e0zjivN5mGR3P-Afcfokkf0KlP-i7X8B0Ypwv0sBz0koVmEhXUylMKo3WiTDhGvBSXLEtipcTh8bfGEEMiTfOxBuTeLEt1uDPW_9hXrbj054bpfTjYvuO43dlW___721YbHSa1_H1RevqNyzRpHkC2gZUJqOp28SIZWK2CjVhcP_VmvkKBHb-wg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRWq5IKBF5VV8oOoFi41j4uSAqgK7vMoqQiBxC7Zjd5HYB_sQ7F_rr-tMHlQc2htHJ7YPM-N5eMbzAeygBxFbrTSnRh9culhy04wTHhotpRXaWkcZ3ctOdHojz2_3b-fgd_0Whsoqa51YKOp8YOmOfA89EYLJpY5BviqLSI_b34ePnBCkKNNaw2mUInLhZk8Yvo0Pzo6R11-FaLeuj055hTDANcbxE554LYVPTOi0CoxC58K7RPkwQbcgV2pfKSesNmhHmgaDc9QcNhCBQRuIlja2JsR938G8wqio2YD5w1YnvXoJ94KwgEhFVUQVjzIoW0aKIIr2urN8RC8PgwjH4rVJfG0RCjPXXoLFyj9lP0qBWoY511-BDxVUenf2EVw6otwO8ZMNPOvp5_vetMfGFley3A0nXaZHhNXEhoSyzeiiF7_TwwKGPJn2KrwwRhX3v1grvdpll9e7TOOKk1bKCmie8Se4eRNKrkKjP-i7z8B0blwofBQ4aaWKTKKbXgrjpdE6FyZeA16TK7NVI3PC03jIMKAh8mYFeTMiL47FGnx7mT8sW3j8c-ZmTf2sOsrj7K_grf__9za8R4nMfp51LjZggfYsa9E2oTEZTd0WOi8T86WSEgZ3by2YfwCVUQMG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+maximum+scour+depth+around+piers+with+debris+accumulation+using+EPR%2C+MT%2C+and+GEP+models&rft.jtitle=Journal+of+hydroinformatics&rft.au=Najafzadeh%2C+Mohammad&rft.au=Mohammad+Rezaie+Balf&rft.au=Rashedi%2C+Esmat&rft.date=2016-09-01&rft.pub=IWA+Publishing&rft.issn=1464-7141&rft.eissn=1465-1734&rft.volume=18&rft.issue=5&rft.spage=867&rft_id=info:doi/10.2166%2Fhydro.2016.212&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7141&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7141&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7141&client=summon