Prediction of maximum scour depth around piers with debris accumulation using EPR, MT, and GEP models
Pier scour phenomena in the presence of debris accumulation have attracted the attention of engineers to present a precise prediction of the local scour depth. Most experimental studies of pier scour depth with debris accumulation have been performed to find an accurate formula to predict the local...
Saved in:
Published in | Journal of hydroinformatics Vol. 18; no. 5; pp. 867 - 884 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
IWA Publishing
01.09.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pier scour phenomena in the presence of debris accumulation have attracted the attention of engineers to present a precise prediction of the local scour depth. Most experimental studies of pier scour depth with debris accumulation have been performed to find an accurate formula to predict the local scour depth. However, an empirical equation with appropriate capacity of validation is not available to evaluate the local scour depth. In this way, gene-expression programming (GEP), evolutionary polynomial regression (EPR), and model tree (MT) based formulations are used to develop to predict the scour depth around bridge piers with debris effects. Laboratory data sets utilized to perform models are collected from different literature. Effective parameters on the local scour depth include geometric characterizations of bridge piers and debris, physical properties of bed sediment, and approaching flow characteristics. The efficiency of the training stages for the GEP, MT, and EPR models are investigated. Performances of the testing results for these models are compared with the traditional approaches based on regression methods. The uncertainty prediction of the MT was quantified and compared with those of existing models. Also, sensitivity analysis was performed to assign effective parameters on the scour depth prediction. |
---|---|
AbstractList | Pier scour phenomena in the presence of debris accumulation have attracted the attention of engineers to present a precise prediction of the local scour depth. Most experimental studies of pier scour depth with debris accumulation have been performed to find an accurate formula to predict the local scour depth. However, an empirical equation with appropriate capacity of validation is not available to evaluate the local scour depth. In this way, gene-expression programming (GEP), evolutionary polynomial regression (EPR), and model tree (MT) based formulations are used to develop to predict the scour depth around bridge piers with debris effects. Laboratory data sets utilized to perform models are collected from different literature. Effective parameters on the local scour depth include geometric characterizations of bridge piers and debris, physical properties of bed sediment, and approaching flow characteristics. The efficiency of the training stages for the GEP, MT, and EPR models are investigated. Performances of the testing results for these models are compared with the traditional approaches based on regression methods. The uncertainty prediction of the MT was quantified and compared with those of existing models. Also, sensitivity analysis was performed to assign effective parameters on the scour depth prediction. |
Author | Najafzadeh, Mohammad Rezaie Balf, Mohammad Rashedi, Esmat |
Author_xml | – sequence: 1 givenname: Mohammad surname: Najafzadeh fullname: Najafzadeh, Mohammad organization: Department of Civil Engineering, Graduate University of Advanced Technology-Kerman, P.O. Box 76315-116, Kerman, Iran – sequence: 2 givenname: Mohammad surname: Rezaie Balf fullname: Rezaie Balf, Mohammad organization: Department of Civil Engineering, Graduate University of Advanced Technology-Kerman, P.O. Box 76315-116, Kerman, Iran – sequence: 3 givenname: Esmat surname: Rashedi fullname: Rashedi, Esmat organization: Department of Civil Engineering, Graduate University of Advanced Technology-Kerman, P.O. Box 76315-116, Kerman, Iran |
BookMark | eNp1kM9LwzAUx4NMcJtePQe8rjMvaZv2KGNOYeKQeS5pkrqMtplJi-6_N-s8CZ7eD76f9_h-J2jU2lYjdAtkTiFN73dH5eycEkjDTC_QGOI0iYCzeDT0ccQhhis08X5PCAWWwRjpjdPKyM7YFtsKN-LbNH2DvbS9w0ofuh0WzvatwgejncdfJmyULp3xWEjZN30tBrj3pv3Ay83bDL9sZ1gEYrXc4MYqXftrdFmJ2uub3zpF74_L7eIpWr-unhcP60gwRroor0RMq7xkWnAoOaNxpXNesZwkqeI84VxTKUqtFSnzjGc8lUChJCkQnmSyZFN0d757cPaz174r9sFHG14WkNMk5owQCKr5WSWd9d7pqjg40wh3LIAUpyiLIcriFGWYaQDiP4A03WC7c8LU_2E_Jep7Bw |
CitedBy_id | crossref_primary_10_1002_apj_2126 crossref_primary_10_1061_JOEEDU_EEENG_7766 crossref_primary_10_1016_j_jhydrol_2021_126100 crossref_primary_10_1061__ASCE_IR_1943_4774_0001402 crossref_primary_10_1016_j_rineng_2021_100326 crossref_primary_10_2166_hydro_2024_047 crossref_primary_10_1007_s40996_016_0025_0 crossref_primary_10_1002_clen_70003 crossref_primary_10_1007_s11269_017_1711_9 crossref_primary_10_1680_jbren_19_00045 crossref_primary_10_2166_ws_2022_233 crossref_primary_10_2166_nh_2017_283 crossref_primary_10_3390_w11040709 crossref_primary_10_3390_su15087016 crossref_primary_10_2166_ws_2017_041 crossref_primary_10_2166_hydro_2024_292 crossref_primary_10_1002_ird_2125 crossref_primary_10_2166_hydro_2024_051 crossref_primary_10_1155_2023_9715120 crossref_primary_10_1155_2023_3854295 crossref_primary_10_2166_ws_2018_084 crossref_primary_10_1016_j_ijsrc_2022_11_004 crossref_primary_10_2166_ws_2022_125 crossref_primary_10_1016_j_engappai_2023_106780 crossref_primary_10_3233_JIFS_240513 crossref_primary_10_1007_s00366_021_01370_2 crossref_primary_10_1680_jmaen_2017_10 crossref_primary_10_1016_j_jenvman_2024_120349 crossref_primary_10_1080_1064119X_2017_1355944 crossref_primary_10_2166_wst_2024_393 crossref_primary_10_2478_johh_2025_0004 crossref_primary_10_1080_1064119X_2021_1907635 crossref_primary_10_1080_0305215X_2016_1230207 crossref_primary_10_1080_15715124_2018_1437738 crossref_primary_10_1016_j_jhydrol_2016_11_058 crossref_primary_10_1080_09715010_2016_1235471 crossref_primary_10_1007_s40996_021_00608_9 crossref_primary_10_1080_09715010_2020_1846144 crossref_primary_10_1007_s42452_020_04124_9 crossref_primary_10_1007_s00500_019_03877_9 crossref_primary_10_1007_s11709_023_0943_4 crossref_primary_10_1007_s40996_020_00364_2 crossref_primary_10_1016_j_istruc_2023_105505 crossref_primary_10_1016_j_engstruct_2021_113815 crossref_primary_10_1080_1064119X_2022_2035025 crossref_primary_10_1016_j_jher_2019_11_002 crossref_primary_10_1007_s10661_022_10844_9 crossref_primary_10_2166_aqua_2018_021 crossref_primary_10_1016_j_amc_2017_06_012 crossref_primary_10_1016_j_oceaneng_2022_112838 crossref_primary_10_1155_2018_8328167 crossref_primary_10_3390_su12031063 crossref_primary_10_1007_s11269_017_1615_8 crossref_primary_10_3390_mca26010006 crossref_primary_10_1016_j_oceaneng_2019_04_013 crossref_primary_10_2166_nh_2018_050 crossref_primary_10_1007_s12205_017_1769_1 crossref_primary_10_3233_JIFS_221342 crossref_primary_10_1007_s40996_018_0129_9 crossref_primary_10_3390_w12051332 crossref_primary_10_1007_s11831_019_09382_4 crossref_primary_10_1016_j_wse_2018_07_001 crossref_primary_10_1080_09715010_2019_1617796 crossref_primary_10_1080_1064119X_2019_1595793 crossref_primary_10_1016_j_wri_2023_100228 crossref_primary_10_1007_s40996_018_0185_1 crossref_primary_10_1155_2021_5540284 crossref_primary_10_1016_j_jhydrol_2019_03_046 crossref_primary_10_1061__ASCE_IR_1943_4774_0001556 crossref_primary_10_3390_en17030697 crossref_primary_10_1080_19942060_2020_1861987 crossref_primary_10_2166_aqua_2020_138 crossref_primary_10_3233_JIFS_234125 crossref_primary_10_1007_s11356_020_11064_9 crossref_primary_10_1016_j_ijsrc_2022_07_008 crossref_primary_10_1016_j_oceaneng_2020_107111 crossref_primary_10_1080_1064119X_2017_1420113 crossref_primary_10_1155_2023_1827117 crossref_primary_10_1016_j_spc_2022_11_018 crossref_primary_10_3233_JIFS_242189 crossref_primary_10_1061__ASCE_WW_1943_5460_0000488 crossref_primary_10_1007_s00500_018_3517_y crossref_primary_10_1007_s40996_018_0151_y crossref_primary_10_1016_j_oceaneng_2023_114825 crossref_primary_10_1080_08839514_2021_2014185 crossref_primary_10_1007_s11269_024_03879_9 crossref_primary_10_2166_ws_2022_372 crossref_primary_10_1007_s00366_019_00802_4 crossref_primary_10_1061_JOEEDU_EEENG_7834 crossref_primary_10_1016_j_oceaneng_2022_113611 crossref_primary_10_2166_hydro_2019_008 crossref_primary_10_1080_09715010_2017_1372226 crossref_primary_10_1016_j_agrformet_2019_107647 crossref_primary_10_1016_j_oceaneng_2018_06_035 crossref_primary_10_2166_hydro_2021_138 crossref_primary_10_1007_s11356_018_1975_5 crossref_primary_10_1007_s40899_017_0104_9 crossref_primary_10_1007_s40996_019_00332_5 |
Cites_doi | 10.2166/hydro.2006.020b 10.1016/j.oceaneng.2006.07.003 10.1016/j.advwatres.2015.06.012 10.3808/jei.201400287 10.2166/hydro.2009.017 10.3808/jei.201400274 10.3808/jei.201400277 10.3808/jei.201400261 10.1016/j.oceaneng.2015.01.014 10.1016/j.jhydrol.2015.03.016 10.1061/(ASCE)HY.1943-7900.0000289 10.1007/s00521-012-1258-x 10.2166/hydro.2010.032 10.1016/j.oceaneng.2011.07.012 10.1016/j.jhydrol.2012.02.018 10.1002/9781118625590 10.1162/106365600568158 10.1016/j.apor.2010.11.002 10.2166/hydro.2012.175 10.2166/hydro.2015.095 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E 10.1016/j.envsoft.2005.12.021 10.1061/(ASCE)HY.1943-7900.0000340 10.1680/maen.2012.165.1.31 10.1002/clen.200800009 10.1016/j.engappai.2012.12.011 10.1016/j.envsoft.2010.10.013 10.1016/j.engappai.2010.09.010 10.2166/hydro.2010.107 10.1016/j.apor.2003.06.001 10.1007/s11269-015-0962-6 10.1002/(SICI)1096-9837(199707)22:7<669::AID-ESP740>3.0.CO;2-L 10.1016/j.compgeo.2009.07.006 10.1016/j.jhydrol.2012.06.034 10.1080/00221680903568592 10.1061/41147(392)85 10.1016/j.jhydrol.2015.09.028 10.1016/j.compstruc.2013.06.012 10.1016/j.envsoft.2005.12.026 10.1007/s11269-013-0506-x 10.1061/(ASCE)HY.1943-7900.0000550 10.1002/qsar.200390007 10.1061/(ASCE)0733-9429(1992)118:9(1306) 10.1016/j.engappai.2015.07.019 10.1061/(ASCE)HY.1943-7900.0000133 10.1016/j.jhydrol.2013.10.034 10.1016/j.cageo.2011.04.015 10.1016/S1001-6279(11)60081-4 10.1016/j.jhydrol.2009.03.038 10.1016/j.engappai.2006.06.012 10.1016/j.jhydrol.2012.05.033 10.2166/hydro.2010.029 10.1061/(ASCE)PS.1949-1204.0000153 10.1007/s11269-009-9535-x |
ContentType | Journal Article |
Copyright | Copyright IWA Publishing Sep 2016 |
Copyright_xml | – notice: Copyright IWA Publishing Sep 2016 |
DBID | AAYXX CITATION 7QH 7UA AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ L.G PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY |
DOI | 10.2166/hydro.2016.212 |
DatabaseName | CrossRef Aqualine Water Resources Abstracts ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1465-1734 |
EndPage | 884 |
ExternalDocumentID | 10_2166_hydro_2016_212 |
GroupedDBID | 0R~ 4.4 5GY 7XC 8CJ 8FE 8FH AAJMC AAJVE AAYOK AAYXX ABFYC ABLGR ACGFO AECGI AENEX AEUYN AFKRA AFRAH AJXRC ALMA_UNASSIGNED_HOLDINGS ATCPS BENPR BHPHI BKSAR CCPQU CITATION CS3 D1J DU5 EBS EJD GEUZO GROUPED_DOAJ H13 HCIFZ HFPTO HZ~ L7B O9- OK1 P2P PATMY PCBAR PHGZM PHGZT PYCSY R0Z RHI ~02 7QH 7UA AZQEC C1K DWQXO F1W GNUQQ H96 L.G PKEHL PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-a330t-9fa42f9b3ea71b7324fe97f39056d77577e2cabeed0b987876c121b0610758cb3 |
IEDL.DBID | BENPR |
ISSN | 1464-7141 |
IngestDate | Fri Jul 25 10:12:29 EDT 2025 Tue Jul 01 04:10:29 EDT 2025 Thu Apr 24 22:57:18 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a330t-9fa42f9b3ea71b7324fe97f39056d77577e2cabeed0b987876c121b0610758cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://iwaponline.com/jh/article-pdf/18/5/867/390550/jh0180867.pdf |
PQID | 1925473001 |
PQPubID | 2044529 |
PageCount | 18 |
ParticipantIDs | proquest_journals_1925473001 crossref_primary_10_2166_hydro_2016_212 crossref_citationtrail_10_2166_hydro_2016_212 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-09-1 20160901 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-1 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Journal of hydroinformatics |
PublicationYear | 2016 |
Publisher | IWA Publishing |
Publisher_xml | – name: IWA Publishing |
References | Ahangar-Asr (2020032612303699300_HYDRO-D-15-00212C1) 2011; 37 Azamathulla (2020032612303699300_HYDRO-D-15-00212C3a) 2010; 136 Draper (2020032612303699300_HYDRO-D-15-00212C15) 1998 Lopez (2020032612303699300_HYDRO-D-15-00212C41) 2011; 414–415 Guven (2020032612303699300_HYDRO-D-15-00212C29) 2008; 36 Lagasse (2020032612303699300_HYDRO-D-15-00212C36) 2010 Savic (2020032612303699300_HYDRO-D-15-00212C57) 2006; 159 Azamathulla (2020032612303699300_HYDRO-D-15-00212C3) 2012; 434–435 Haykin (2020032612303699300_HYDRO-D-15-00212C31) 1999 Azamathulla (2020032612303699300_HYDRO-D-15-00212C2) 2012; 460–461 Zhang (2020032612303699300_HYDRO-D-15-00212C70a) 2014; 24 Azamathulla (2020032612303699300_HYDRO-D-15-00212C4) 2012; 8 Franzetti (2020032612303699300_HYDRO-D-15-00212C23a) 2011; 137 Giustolisi (2020032612303699300_HYDRO-D-15-00212C28a) 2007; 5 Singh (2020032612303699300_HYDRO-D-15-00212C59) 2009; 24 Rezania (2020032612303699300_HYDRO-D-15-00212C53) 2010; 37 Shiri (2020032612303699300_HYDRO-D-15-00212C58) 2014; 508 Tropsha (2020032612303699300_HYDRO-D-15-00212C62) 2003; 22 Sattar (2020032612303699300_HYDRO-D-15-00212C55) 2014; 5 2020032612303699300_HYDRO-D-15-00212C14 Bateni (2020032612303699300_HYDRO-D-15-00212C8) 2007; 20 Wu (2020032612303699300_HYDRO-D-15-00212C66) 2009; 372 Bateni (2020032612303699300_HYDRO-D-15-00212C7) 2007; 34 Xu (2020032612303699300_HYDRO-D-15-00212C67a) 2014; 24 Zahmatkesh (2020032612303699300_HYDRO-D-15-00212C69) 2015; 83 Briaud (2020032612303699300_HYDRO-D-15-00212C11) 2006 Ismail (2020032612303699300_HYDRO-D-15-00212C32) 2013; 29 Braudrick (2020032612303699300_HYDRO-D-15-00212C10) 1997; 22 Rahimikhoob (2020032612303699300_HYDRO-D-15-00212C51) 2014; 28 Reed (2020032612303699300_HYDRO-D-15-00212C52) 2007; 22 Pagliara (2020032612303699300_HYDRO-D-15-00212C47) 2011; 137 Giustolisi (2020032612303699300_HYDRO-D-15-00212C28) 2009; 11 Sattar (2020032612303699300_HYDRO-D-15-00212C56) 2015; 524 Ghazanfari-Hashemi (2020032612303699300_HYDRO-D-15-00212C25) 2011; 13 Wang (2020032612303699300_HYDRO-D-15-00212C64) 1997 Ferreria (2020032612303699300_HYDRO-D-15-00212C23) 2006 Pagliara (2020032612303699300_HYDRO-D-15-00212C46) 2010; 48 Wang (2020032612303699300_HYDRO-D-15-00212C65) 2015; 29 Giustolisi (2020032612303699300_HYDRO-D-15-00212C27) 2006; 8 Bradley (2020032612303699300_HYDRO-D-15-00212C9) 2005 Chau (2020032612303699300_HYDRO-D-15-00212C12) 2010; 12 Gholami (2020032612303699300_HYDRO-D-15-00212C26) 2015; 529 Najafzadeh (2020032612303699300_HYDRO-D-15-00212C44) 2014; 24 Taormina (2020032612303699300_HYDRO-D-15-00212C61) 2015; 45 Jozsa (2020032612303699300_HYDRO-D-15-00212C32a) 2014; 24 Pareto (2020032612303699300_HYDRO-D-15-00212C49) 1896 Laucelli (2020032612303699300_HYDRO-D-15-00212C39) 2012 Etemad-Shahidi (2020032612303699300_HYDRO-D-15-00212C18) 2012; 138 Najafzadeh (2020032612303699300_HYDRO-D-15-00212C43) 2015; 99 Chen (2020032612303699300_HYDRO-D-15-00212C13) 2015; 17 Etemad-Shahidi (2020032612303699300_HYDRO-D-15-00212C17) 2011; 38 Pagliara (2020032612303699300_HYDRO-D-15-00212C48) 2011; 26 Etemad-Shahidi (2020032612303699300_HYDRO-D-15-00212C20) 2011; 33 2020032612303699300_HYDRO-D-15-00212C37 Miao (2020032612303699300_HYDRO-D-15-00212C42a) 2014; 24 El-Baroudy (2020032612303699300_HYDRO-D-15-00212C16) 2010; 12 Shiri (2020032612303699300_HYDRO-D-15-00212C57a) 2011; 37 Ferreria (2020032612303699300_HYDRO-D-15-00212C22) 2001; 13 Zevenbergen (2020032612303699300_HYDRO-D-15-00212C70) 2006 Newcombe (2020032612303699300_HYDRO-D-15-00212C45) 1998; 17 Sok (2020032612303699300_HYDRO-D-15-00212C60) 2015 Kambekar (2020032612303699300_HYDRO-D-15-00212C33) 2003; 25 Laucelli (2020032612303699300_HYDRO-D-15-00212C38) 2011; 26 Laursen (2020032612303699300_HYDRO-D-15-00212C40) 1956 Zahmatkesh (2020032612303699300_HYDRO-D-15-00212C67c) 2014; 20 Zahmatkesh (2020032612303699300_HYDRO-D-15-00212C67b) 2014 Rezania (2020032612303699300_HYDRO-D-15-00212C54) 2011; 24 Lagasse (2020032612303699300_HYDRO-D-15-00212C35) 2009 Faramarzi (2020032612303699300_HYDRO-D-15-00212C21) 2014; 137 Quinlan (2020032612303699300_HYDRO-D-15-00212C50) 1992 Ghaemi (2020032612303699300_HYDRO-D-15-00212C24) 2013; 15 Kashid (2020032612303699300_HYDRO-D-15-00212C34) 2012; 454–455 Melville (2020032612303699300_HYDRO-D-15-00212C42) 1992; 118 Guven (2020032612303699300_HYDRO-D-15-00212C30) 2012; 165 Van Veldhuizen (2020032612303699300_HYDRO-D-15-00212C63) 2000; 8 |
References_xml | – volume: 8 start-page: 207 year: 2006 ident: 2020032612303699300_HYDRO-D-15-00212C27 article-title: A symbolic data-driven technique based on evolutionary polynomial regression publication-title: J. Hydroinform. doi: 10.2166/hydro.2006.020b – volume: 34 start-page: 1344 year: 2007 ident: 2020032612303699300_HYDRO-D-15-00212C7 article-title: Estimation of pile group scour using adaptive neuro-fuzzy approach publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2006.07.003 – volume: 37 start-page: 1692 year: 2011 ident: 2020032612303699300_HYDRO-D-15-00212C57a article-title: Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations publication-title: J. Cageo. – volume: 83 start-page: 405 year: 2015 ident: 2020032612303699300_HYDRO-D-15-00212C69 article-title: Uncertainty based modeling of rainfall-runoff: combined differential evolution adaptive metropolis (DREAM) and K-means clustering publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2015.06.012 – volume: 24 start-page: 111 issue: 2 year: 2014 ident: 2020032612303699300_HYDRO-D-15-00212C32a article-title: Sediment flux and its environmental implications publication-title: J. Environ. Inform. doi: 10.3808/jei.201400287 – volume: 11 start-page: 225 year: 2009 ident: 2020032612303699300_HYDRO-D-15-00212C28 article-title: Advances in data-driven analyses and modelling using EPR-MOGA publication-title: J. Hydroinform. doi: 10.2166/hydro.2009.017 – volume: 24 start-page: 52 issue: 1 year: 2014 ident: 2020032612303699300_HYDRO-D-15-00212C70a article-title: An Inexact Two-Stage Water Quality Management Model for Supporting Sustainable Development in a Rural System publication-title: Journal of Environmental Informatics doi: 10.3808/jei.201400274 – volume: 24 start-page: 11 issue: 1 year: 2014 ident: 2020032612303699300_HYDRO-D-15-00212C42a article-title: Planning water resources systems under uncertainty using an interval-fuzzy de novo programming method publication-title: J. Environ. Informat. doi: 10.3808/jei.201400277 – volume: 24 start-page: 101 issue: 2 year: 2014 ident: 2020032612303699300_HYDRO-D-15-00212C67a article-title: A two-stage fuzzy chance-constrained model for solid waste allocation planning publication-title: J. Environ. Inform. doi: 10.3808/jei.201400261 – volume: 99 start-page: 85 year: 2015 ident: 2020032612303699300_HYDRO-D-15-00212C43 article-title: Neuro-fuzzy GMDH systems based evolutionary algorithms to predict scour pile groups in clear water conditions publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2015.01.014 – volume: 524 start-page: 587 year: 2015 ident: 2020032612303699300_HYDRO-D-15-00212C56 article-title: Gene expression models for prediction of longitudinal dispersion coefficient in streams publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.03.016 – volume: 137 start-page: 254 year: 2011 ident: 2020032612303699300_HYDRO-D-15-00212C47 article-title: Influence of wood debris accumulation on bridge pier scour publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)HY.1943-7900.0000289 – volume: 24 start-page: 629 year: 2014 ident: 2020032612303699300_HYDRO-D-15-00212C44 article-title: Prediction of pipeline scour depth in clear-water and live-bed conditions using group method of data handling publication-title: Neural Comput. Appl doi: 10.1007/s00521-012-1258-x – volume: 12 start-page: 458 issue: 4 year: 2010 ident: 2020032612303699300_HYDRO-D-15-00212C12 article-title: A hybrid model coupled with singular spectrum analysis for daily rainfall prediction publication-title: J. Hydroinform. doi: 10.2166/hydro.2010.032 – start-page: 1 year: 2015 ident: 2020032612303699300_HYDRO-D-15-00212C60 article-title: A study on the effects of debris accumulation at sacrificial piles on bridge pier scour: I. Experimental results publication-title: Korean Soc. Civil Eng. – volume-title: Cours D'Economie Politique year: 1896 ident: 2020032612303699300_HYDRO-D-15-00212C49 – volume: 38 start-page: 1522 year: 2011 ident: 2020032612303699300_HYDRO-D-15-00212C17 article-title: Model tree approach for prediction of pile groups scour due to waves publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2011.07.012 – volume: 434–435 start-page: 142 year: 2012 ident: 2020032612303699300_HYDRO-D-15-00212C3 article-title: Gene expression programming for transverse mixing coefficient publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.02.018 – volume-title: Applied Regression Analysis year: 1998 ident: 2020032612303699300_HYDRO-D-15-00212C15 doi: 10.1002/9781118625590 – volume: 8 start-page: 125 year: 2000 ident: 2020032612303699300_HYDRO-D-15-00212C63 article-title: Multiobjective evolutionary algorithms analyzing the state-of-the-art publication-title: Evolutionary Computat. doi: 10.1162/106365600568158 – volume-title: Gene-expression Programming: Mathematical Modeling by an Artificial Intelligence year: 2006 ident: 2020032612303699300_HYDRO-D-15-00212C23 – year: 1956 ident: 2020032612303699300_HYDRO-D-15-00212C40 – year: 1997 ident: 2020032612303699300_HYDRO-D-15-00212C64 article-title: Induction of model trees for predicting continuous classes – volume: 33 start-page: 54 year: 2011 ident: 2020032612303699300_HYDRO-D-15-00212C20 article-title: Prediction of wave-induced scour depth under submarine pipelines using machine learning approach publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2010.11.002 – volume: 15 start-page: 516 year: 2013 ident: 2020032612303699300_HYDRO-D-15-00212C24 article-title: Estimation of current-induced pile groups scour using a rule based method publication-title: J. Hydroinform. doi: 10.2166/hydro.2012.175 – start-page: 343 year: 1992 ident: 2020032612303699300_HYDRO-D-15-00212C50 article-title: Learning with continuous classes – volume: 17 start-page: 733 issue: 5 year: 2015 ident: 2020032612303699300_HYDRO-D-15-00212C13 article-title: A novel hybrid neural network based on continuity equation and fuzzy pattern-recognition for downstream daily river discharge forecasting publication-title: J. Hydroinform. doi: 10.2166/hydro.2015.095 – volume: 17 start-page: 857 issue: 8 year: 1998 ident: 2020032612303699300_HYDRO-D-15-00212C45 article-title: Two-sided confidence intervals for the single proportion: comparison of seven methods publication-title: Stat. Med. doi: 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E – volume: 159 start-page: 111 year: 2006 ident: 2020032612303699300_HYDRO-D-15-00212C57 article-title: Modelling sewers failure using evolutionary computing publication-title: Proc. ICE, Water Manage. – volume: 22 start-page: 683 year: 2007 ident: 2020032612303699300_HYDRO-D-15-00212C52 article-title: Using interactive archives in evolutionary multiobjective optimization: a case study for long-term groundwater monitoring design publication-title: Environ. Modell. Softw. doi: 10.1016/j.envsoft.2005.12.021 – volume: 137 start-page: 615 year: 2011 ident: 2020032612303699300_HYDRO-D-15-00212C23a article-title: Hydraulic design and preliminary performance evaluation of countermeasure against debris accumulation and resulting local pier scour on River Po in Italy publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)HY.1943-7900.0000340 – volume: 165 start-page: 31 year: 2012 ident: 2020032612303699300_HYDRO-D-15-00212C30 article-title: Predicting wave-induced scour around a circular pile publication-title: Maritime Eng. doi: 10.1680/maen.2012.165.1.31 – volume: 36 start-page: 905 year: 2008 ident: 2020032612303699300_HYDRO-D-15-00212C29 article-title: Genetic programming based empirical model for daily reference evapotranspiration estimation publication-title: Clean Soil Air Water doi: 10.1002/clen.200800009 – volume: 29 start-page: 1540 year: 2013 ident: 2020032612303699300_HYDRO-D-15-00212C32 article-title: Predictions of bridge scour: application of a feed-forward neural network with an adaptive activation function publication-title: Eng. Appl. Artificial Intell. doi: 10.1016/j.engappai.2012.12.011 – volume: 26 start-page: 498 year: 2011 ident: 2020032612303699300_HYDRO-D-15-00212C38 article-title: Scour depth modelling by a multi-objective evolutionary paradigm publication-title: Environ. Modell. Softw. doi: 10.1016/j.envsoft.2010.10.013 – volume: 24 start-page: 142 year: 2011 ident: 2020032612303699300_HYDRO-D-15-00212C54 article-title: An evolutionary based approach for assessment of earthquake-induced soil liquefaction and lateral displacement publication-title: Eng. Appl. Artificial Intell. doi: 10.1016/j.engappai.2010.09.010 – volume: 13 start-page: 609 year: 2011 ident: 2020032612303699300_HYDRO-D-15-00212C25 article-title: Prediction of pile group scour in waves using support vector machines and ANN publication-title: J. Hydroinform. doi: 10.2166/hydro.2010.107 – volume: 25 start-page: 225 year: 2003 ident: 2020032612303699300_HYDRO-D-15-00212C33 article-title: Estimation of pile group scour using neural networks publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2003.06.001 – volume: 29 start-page: 2655 issue: 8 year: 2015 ident: 2020032612303699300_HYDRO-D-15-00212C65 article-title: Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition publication-title: Water Resour. Manage. doi: 10.1007/s11269-015-0962-6 – volume: 22 start-page: 669 year: 1997 ident: 2020032612303699300_HYDRO-D-15-00212C10 article-title: Dynamics of wood transport in streams: a flume experiment publication-title: Earth Surf. Process. Landforms doi: 10.1002/(SICI)1096-9837(199707)22:7<669::AID-ESP740>3.0.CO;2-L – volume: 37 start-page: 82 year: 2010 ident: 2020032612303699300_HYDRO-D-15-00212C53 article-title: Evaluation of liquefaction potential based on CPT results using evolutionary polynomial regression publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2009.07.006 – volume: 460–461 start-page: 156 year: 2012 ident: 2020032612303699300_HYDRO-D-15-00212C2 article-title: Gene expression programming for prediction of scour depth downstream of sills publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.06.034 – ident: 2020032612303699300_HYDRO-D-15-00212C14 – volume: 20 start-page: 05014022 issue: 7 year: 2014 ident: 2020032612303699300_HYDRO-D-15-00212C67c article-title: Low-impact development practices to mitigate climate change effects on urban stormwater runoff: case study of New York City publication-title: J. Irrig. Drain Eng. – year: 2012 ident: 2020032612303699300_HYDRO-D-15-00212C39 article-title: EPR-MOGA-XL: an Excel based paradigm to enhance transfer of research achievements on data-driven modeling – volume: 48 start-page: 3 issue: 1 year: 2010 ident: 2020032612303699300_HYDRO-D-15-00212C46 article-title: Temporal scour evolution at bridge piers: effect of wood debris roughness and porosity publication-title: J. Hydraul. Res. doi: 10.1080/00221680903568592 – year: 2010 ident: 2020032612303699300_HYDRO-D-15-00212C36 article-title: Impacts of debris on bridge pier scour doi: 10.1061/41147(392)85 – year: 2006 ident: 2020032612303699300_HYDRO-D-15-00212C70 article-title: Effects of debris on bridge pier scour – volume: 529 start-page: 1060 issue: 3 year: 2015 ident: 2020032612303699300_HYDRO-D-15-00212C26 article-title: Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.09.028 – volume: 13 start-page: 87 issue: 2 year: 2001 ident: 2020032612303699300_HYDRO-D-15-00212C22 article-title: Gene-expression programming. a new adaptive algorithm for solving problems publication-title: Complex Systems – ident: 2020032612303699300_HYDRO-D-15-00212C37 doi: 10.1061/41147(392)85 – volume: 137 start-page: 63 year: 2014 ident: 2020032612303699300_HYDRO-D-15-00212C21 article-title: An EPR-based self-learning approach to material modeling publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2013.06.012 – volume: 5 start-page: 674 year: 2007 ident: 2020032612303699300_HYDRO-D-15-00212C28a article-title: A multi-model approach to analysis of environmental phenomena publication-title: Environ. Modell. Softw. doi: 10.1016/j.envsoft.2005.12.026 – volume: 28 start-page: 657 year: 2014 ident: 2020032612303699300_HYDRO-D-15-00212C51 article-title: Comparison between M5 model tree and neural networks for estimating reference evapotranspiration in an arid environment publication-title: Water Resour. Manage. doi: 10.1007/s11269-013-0506-x – volume: 8 start-page: 5045 issue: 7B year: 2012 ident: 2020032612303699300_HYDRO-D-15-00212C4 article-title: Prediction of scour depth at culvert outlets using gene-expression programming publication-title: Int. J. Innovative Comput. Inform. Control – start-page: 179 volume-title: Debris Control Structures Evaluations and Countermeasures year: 2005 ident: 2020032612303699300_HYDRO-D-15-00212C9 – volume: 138 start-page: 542 year: 2012 ident: 2020032612303699300_HYDRO-D-15-00212C18 article-title: Predicting longitudinal dispersion coefficient in natural streams using M5′ model tree publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)HY.1943-7900.0000550 – volume: 22 start-page: 69 issue: 1 year: 2003 ident: 2020032612303699300_HYDRO-D-15-00212C62 article-title: The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models publication-title: QSAR Comb. Sci. doi: 10.1002/qsar.200390007 – volume: 118 start-page: 1306 year: 1992 ident: 2020032612303699300_HYDRO-D-15-00212C42 article-title: Bridge pier scour with debris accumulation publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)0733-9429(1992)118:9(1306) – volume: 45 start-page: 429 year: 2015 ident: 2020032612303699300_HYDRO-D-15-00212C61 article-title: ANN-based interval forecasting of streamflow discharges using the LUBE method and MOFIPS publication-title: Eng. Appl. Artificial Intell. doi: 10.1016/j.engappai.2015.07.019 – volume: 136 start-page: 165 issue: 3 year: 2010 ident: 2020032612303699300_HYDRO-D-15-00212C3a article-title: Genetic programming to predict bridge pier scour publication-title: ASCE J. Hydraul. Eng. doi: 10.1061/(ASCE)HY.1943-7900.0000133 – volume: 508 start-page: 1 year: 2014 ident: 2020032612303699300_HYDRO-D-15-00212C58 article-title: Generalizability of gene expression programming-based approaches for estimating daily reference evapotranspiration in coastal stations of Iran publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.10.034 – volume: 37 start-page: 1860 year: 2011 ident: 2020032612303699300_HYDRO-D-15-00212C1 article-title: Modeling of permeability and compaction characteristics of soils using evolutionary polynomial regression publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2011.04.015 – volume: 26 start-page: 121 year: 2011 ident: 2020032612303699300_HYDRO-D-15-00212C48 article-title: Influence of large woody debris on sediment scour at bridge piers publication-title: Int. J. Sediment Res. doi: 10.1016/S1001-6279(11)60081-4 – volume: 372 start-page: 80 issue: 1–4 year: 2009 ident: 2020032612303699300_HYDRO-D-15-00212C66 article-title: Methods to improve neural network performance in daily flows prediction publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.03.038 – year: 2014 ident: 2020032612303699300_HYDRO-D-15-00212C67b article-title: Analysis of the effects of climate change on urban storm water runoff using statistically downscaled precipitation data and a change factor approach publication-title: J. Hydrol. Eng. – volume: 20 start-page: 401 year: 2007 ident: 2020032612303699300_HYDRO-D-15-00212C8 article-title: Neural network and neuro-fuzzy assessments for scour depth around bridge piers publication-title: Eng. Appl. Artificial Intell. doi: 10.1016/j.engappai.2006.06.012 – volume: 454–455 start-page: 26 year: 2012 ident: 2020032612303699300_HYDRO-D-15-00212C34 article-title: Prediction of monthly rainfall on homogeneous monsoon regions of India based on large scale circulation patterns using Genetic Programming publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.05.033 – volume-title: Neural Networks: A Comprehensive Foundation year: 1999 ident: 2020032612303699300_HYDRO-D-15-00212C31 – volume: 414–415 start-page: 302 year: 2011 ident: 2020032612303699300_HYDRO-D-15-00212C41 article-title: Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain) publication-title: J. Hydrol. – year: 2006 ident: 2020032612303699300_HYDRO-D-15-00212C11 article-title: Scour at bridges due to debris accumulation: a review – volume: 12 start-page: 365 issue: 4 year: 2010 ident: 2020032612303699300_HYDRO-D-15-00212C16 article-title: Comparison of three data-driven techniques in modelling the evapotranspiration process publication-title: J. Hydroinform. doi: 10.2166/hydro.2010.029 – volume: 5 start-page: 4013011 year: 2014 ident: 2020032612303699300_HYDRO-D-15-00212C55 article-title: Gene expression models for the prediction of longitudinal dispersion coefficients in transitional and turbulent pipe flow publication-title: J. Pipeline Syst. Eng. Pract. doi: 10.1061/(ASCE)PS.1949-1204.0000153 – volume: 24 start-page: 2007 year: 2009 ident: 2020032612303699300_HYDRO-D-15-00212C59 article-title: Estimation of mean annual flood in Indian catchments using backpropagation neural network and M5 model tree publication-title: Water Resour. Manage. doi: 10.1007/s11269-009-9535-x – start-page: 3967 year: 2009 ident: 2020032612303699300_HYDRO-D-15-00212C35 article-title: Impacts of debris on bridge pier scour |
SSID | ssj0021381 |
Score | 2.402573 |
Snippet | Pier scour phenomena in the presence of debris accumulation have attracted the attention of engineers to present a precise prediction of the local scour depth.... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 867 |
SubjectTerms | Accumulation Bed load Bridge piers Bridges Capacity Debris Depth Detritus Empirical equations Floods Flow characteristics Formulations Gene expression Geometry Informatics Laboratories Mathematical models Neural networks Parameter sensitivity Parameters Physical properties Piers Regression analysis Scour Scouring Sensitivity analysis Studies Training |
Title | Prediction of maximum scour depth around piers with debris accumulation using EPR, MT, and GEP models |
URI | https://www.proquest.com/docview/1925473001 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagHWBBPEWhIA9ILLXaOG6cTAhQSoXUqqpaqVtkOw5Fog_6kOi_5y5xixhgdGJn-Bzfffad7yPkDhhEaJRUDAt9MGFDwXQjjJivlRCGK2MsRnQ73aA9FK-j5sgduC1dWuXWJuaGOp0ZPCOvAxNBmVywqg_zT4aqURhddRIa-6QMJjiEzVf5Ke72-rstl-fnMqVgDjDrUHhF2UbuBUF9vEkXePvPC6DNf7ul31Y5dzWtY3LkOCJ9LCb1hOzZ6Sk5cHLl480Zsb0FxlcQUzrL6ER9vU_WE7o0MJKmdr4aU7VAvSQ6R6Vrioet8ByT-yngsp44zS6KWe9vNO71a7QzqFEFI17iHs3lcZbnZNiKB89t5vQSmPL9xopFmRI8i7RvlfS0BKqU2UhmfgQkJ5WyKaXlRmnwig0dhbBSA-NxT4NHB94QGu1fkNJ0NrWXhKpUW59ngWeFETLQkWpkgutMaKVSrsMKYVu4EuOKiaOmxUcCmwqEN8nhTRBeaPMKud_1nxdlNP7sWd2in7jltEx-Jv_q_9fX5BA_VCSBVUlptVjbG2ANK33rfo1v6znCZQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB5BOcAFLeyuFpaHD6C9YNE4bpwcEOJRKI9WFSoSt2A7DkXaPrYPQf8Uv5GZPEAc2BtHJ7YP4_HMfPZ4PoAdjCBCq5XmVOiDSxdKbqphxH2jpbRCW-voRrfZChq38vKudjcHL-VbGEqrLG1iZqiTgaUz8n2MRIgmF63q4fAfJ9Youl0tKTRytbhysyeEbOODi1Nc310hzuqdkwYvWAW4Ruw-4VGqpUgj4zutPKMwoEhdpFLE_rUgUaqmlBNWG_QdVYOAHK2F9YRn0O-hdw2t8XHeeViQPkKZCiwc11vtmzeI5_kZLSqaH8pylF5eJlJ4QbDfnSUjem3oBdgWH93gRy-Qubazb7BcxKTsKFeiFZhz_VVYLOjRu7Pv4Nojus-hNWSDlPX082Nv2mNjiyNZ4oaTLtMj4mdiQ2LWZnS4i9_pMQHDdZj2Co4wRln2D6zevtljzc4e0zjivN5mGR3P-Afcfokkf0KlP-i7X8B0Ypwv0sBz0koVmEhXUylMKo3WiTDhGvBSXLEtipcTh8bfGEEMiTfOxBuTeLEt1uDPW_9hXrbj054bpfTjYvuO43dlW___721YbHSa1_H1RevqNyzRpHkC2gZUJqOp28SIZWK2CjVhcP_VmvkKBHb-wg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRWq5IKBF5VV8oOoFi41j4uSAqgK7vMoqQiBxC7Zjd5HYB_sQ7F_rr-tMHlQc2htHJ7YPM-N5eMbzAeygBxFbrTSnRh9culhy04wTHhotpRXaWkcZ3ctOdHojz2_3b-fgd_0Whsoqa51YKOp8YOmOfA89EYLJpY5BviqLSI_b34ePnBCkKNNaw2mUInLhZk8Yvo0Pzo6R11-FaLeuj055hTDANcbxE554LYVPTOi0CoxC58K7RPkwQbcgV2pfKSesNmhHmgaDc9QcNhCBQRuIlja2JsR938G8wqio2YD5w1YnvXoJ94KwgEhFVUQVjzIoW0aKIIr2urN8RC8PgwjH4rVJfG0RCjPXXoLFyj9lP0qBWoY511-BDxVUenf2EVw6otwO8ZMNPOvp5_vetMfGFley3A0nXaZHhNXEhoSyzeiiF7_TwwKGPJn2KrwwRhX3v1grvdpll9e7TOOKk1bKCmie8Se4eRNKrkKjP-i7z8B0blwofBQ4aaWKTKKbXgrjpdE6FyZeA16TK7NVI3PC03jIMKAh8mYFeTMiL47FGnx7mT8sW3j8c-ZmTf2sOsrj7K_grf__9za8R4nMfp51LjZggfYsa9E2oTEZTd0WOi8T86WSEgZ3by2YfwCVUQMG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+maximum+scour+depth+around+piers+with+debris+accumulation+using+EPR%2C+MT%2C+and+GEP+models&rft.jtitle=Journal+of+hydroinformatics&rft.au=Najafzadeh%2C+Mohammad&rft.au=Mohammad+Rezaie+Balf&rft.au=Rashedi%2C+Esmat&rft.date=2016-09-01&rft.pub=IWA+Publishing&rft.issn=1464-7141&rft.eissn=1465-1734&rft.volume=18&rft.issue=5&rft.spage=867&rft_id=info:doi/10.2166%2Fhydro.2016.212&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7141&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7141&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7141&client=summon |