Prediction of maximum scour depth around piers with debris accumulation using EPR, MT, and GEP models

Pier scour phenomena in the presence of debris accumulation have attracted the attention of engineers to present a precise prediction of the local scour depth. Most experimental studies of pier scour depth with debris accumulation have been performed to find an accurate formula to predict the local...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydroinformatics Vol. 18; no. 5; pp. 867 - 884
Main Authors Najafzadeh, Mohammad, Rezaie Balf, Mohammad, Rashedi, Esmat
Format Journal Article
LanguageEnglish
Published London IWA Publishing 01.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pier scour phenomena in the presence of debris accumulation have attracted the attention of engineers to present a precise prediction of the local scour depth. Most experimental studies of pier scour depth with debris accumulation have been performed to find an accurate formula to predict the local scour depth. However, an empirical equation with appropriate capacity of validation is not available to evaluate the local scour depth. In this way, gene-expression programming (GEP), evolutionary polynomial regression (EPR), and model tree (MT) based formulations are used to develop to predict the scour depth around bridge piers with debris effects. Laboratory data sets utilized to perform models are collected from different literature. Effective parameters on the local scour depth include geometric characterizations of bridge piers and debris, physical properties of bed sediment, and approaching flow characteristics. The efficiency of the training stages for the GEP, MT, and EPR models are investigated. Performances of the testing results for these models are compared with the traditional approaches based on regression methods. The uncertainty prediction of the MT was quantified and compared with those of existing models. Also, sensitivity analysis was performed to assign effective parameters on the scour depth prediction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1464-7141
1465-1734
DOI:10.2166/hydro.2016.212