Enhanced Antimicrobial Efficacy of Bimetallic Porous CuO Microspheres Decorated with Ag Nanoparticles

The antimicrobial action of porous CuO microspheres (μCuO), Ag nanoparticles (nAg), and bimetallic porous CuO microspheres decorated with Ag nanoparticles (μCuO/nAg) was evaluated against surrogate microorganisms representative of pathogens commonly implicated in foodborne and healthcare-associated...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 9; no. 45; pp. 39165 - 39173
Main Authors Chen, Xuemei, Ku, Seockmo, Weibel, Justin A., Ximenes, Eduardo, Liu, Xingya, Ladisch, Michael, Garimella, Suresh V.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 15.11.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The antimicrobial action of porous CuO microspheres (μCuO), Ag nanoparticles (nAg), and bimetallic porous CuO microspheres decorated with Ag nanoparticles (μCuO/nAg) was evaluated against surrogate microorganisms representative of pathogens commonly implicated in foodborne and healthcare-associated human infections. This work addressed the Gram-negative bacteria E. coli (Escherichia coli O157:H7-GFP B6-914), Salmonella (Salmonella enterica serovar enteritidis phage-type PT21), and the Gram-positive bacteria Listeria (Listeria innocua), as well as environmental microorganisms derived from local river water. Compared to particles composed only of CuO or Ag, the bimetallic porous μCuO/nAg particle exhibits enhanced antimicrobial efficacy. The antimicrobial action of bimetallic porous μCuO/nAg particles is dose-dependent, with 50 μg/mL particle concentration completely inhibiting the growth of both the Gram-negative (Salmonella) and the Gram-positive (Listeria) bacteria after 6 h. To assess the mechanism of antimicrobial action, the changes in surface morphologies of bacteria treated with the particles were observed using scanning electron microscopy. In the case of the Gram-negative bacteria, the bacterial cell membrane is damaged, likely due to the release of metal ions from the particles; however, particle-induced cell membrane damage is not observed for Gram-positive bacteria. Collectively, results from this work shed further light on possible mechanisms of antimicrobial action of micro-/nanoparticles and highlight the potential for bimetallic particle-based inhibition of microbial infections.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.7b11364