Dynamic Manipulation of DNA-Programmed Crystals Embedded in a Polyelectrolyte Hydrogel
DNA is a powerful tool for programming the three-dimensional organization of nanomaterials, where the specificity of nucleotide base-pairing can enable precise, complex, and dynamically addressable structures like colloidal crystals. However, because these DNA-programmed materials are often only sta...
Saved in:
Published in | ACS applied materials & interfaces Vol. 13; no. 9; pp. 11215 - 11223 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
10.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | DNA is a powerful tool for programming the three-dimensional organization of nanomaterials, where the specificity of nucleotide base-pairing can enable precise, complex, and dynamically addressable structures like colloidal crystals. However, because these DNA-programmed materials are often only stable in solution, their organization can be easily disrupted by changes to its local environment. Methods to stabilize these materials have been developed, but often come at the expense of altering or permanently fixing the materials’ structures, removing many of the benefits of using DNA interactions to program assembly. Thus, these methods limit the application of DNA-assembled structures as dynamic and programmable material components. Here, a method is presented to resolve these drawbacks for DNA-grafted nanoparticles, also known as Programmable Atom Equivalents (PAEs), by embedding assembled lattices within a hydrogel matrix. The preformed lattices are exposed to polymerizable residues that electrostatically bind to the charged backbone of the DNA ligands and form a continuous, permeating gel network that stabilizes the colloidal crystals upon introduction of a radical initiator. After embedding PAEs in a hydrogel, deformation of the macroscopic matrix results in concomitant deformation of the PAE lattices, allowing superlattice structural changes to be induced by chemical methods (such as changing solute concentration to alter swelling pressure) or by application of mechanical strain. Changes to the structure of the PAE lattices are reversible and repeatable over multiple cycles and can be either isotropic (such as by swelling) or anisotropic (such as by mechanical deformation). This method of embedding nanoparticle crystals inside of a flexible and environmentally responsive hydrogel is therefore a useful tool in extending the utility of PAEs and other micro- and nanostructures assembled with DNA. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c23097 |