Stabilizing High-Voltage Cathodes via Ball-Mill Coating with Flame-Made Nanopowder Electrolytes

LiMn1.5Ni0.5O4 (LMNO) spinel has recently been the subject of intense research as a cathode material because it is cheap, cobalt-free, and has a high discharge voltage (4.7 V). However, the decomposition of conventional liquid electrolytes on the cathode surface at this high oxidation state and the...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 14; no. 44; pp. 49617 - 49632
Main Authors Yu, Mengjie, Brandt, Taylor G., Temeche, Eleni, Laine, Richard M.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 09.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:LiMn1.5Ni0.5O4 (LMNO) spinel has recently been the subject of intense research as a cathode material because it is cheap, cobalt-free, and has a high discharge voltage (4.7 V). However, the decomposition of conventional liquid electrolytes on the cathode surface at this high oxidation state and the dissolution of Mn2+ have hindered its practical utility. We report here that simply ball-mill coating LMNO using flame-made nanopowder (NPs, 5–20 wt %, e.g., LiAlO2, LATSP, LLZO) electrolytes generates coated composites that mitigate these well-recognized issues. As-synthesized composite cathodes maintain a single P4332 cubic spinel phase. Transmission electron microscopy (TEM) and X-ray photoelectron spectra (XPS) show island-type NP coatings on LMNO surfaces. Different NPs show various effects on LMNO composite cathode performance compared to pristine LMNO (120 mAh g–1, 93% capacity retention after 50 cycles at C/3, ∼67 mAh g–1 at 8C, and ∼540 Wh kg–1 energy density). For example, the LMNO + 20 wt % LiAlO2 composite cathodes exhibit Li+ diffusivities improved by two orders of magnitude over pristine LMNO and discharge capacities up to ∼136 mAh g–1 after 100 cycles at C/3 (98% retention), while 10 wt % LiAlO2 shows ∼110 mAh g–1 at 10C and an average discharge energy density of ∼640 Wh kg–1. Detailed postmortem analyses on cycled composite electrodes demonstrate that NP coatings form protective layers. In addition, preliminary studies suggest potential utility in all-solid-state batteries (ASSBs).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.2c09284