Tuning of Molecular Interactions between Zein and Tannic Acid to Modify Sunflower Sporopollenin Exine Capsules: Enhanced Stability and Targeted Delivery of Bioactive Macromolecules

There are multiple obstacles for the storage and digestion of orally administered bioactive macromolecules. This study developed a low-cost and sustained-release delivery system (sporopollenin exine capsules with zein/tannic acid modification) of proteins with excellent storage stability, and at the...

Full description

Saved in:
Bibliographic Details
Published inACS applied bio materials Vol. 4; no. 3; pp. 2686 - 2695
Main Authors Deng, Ziyu, Wang, Shishuai, Pei, Yaqiong, Zhou, Bin, Li, Jing, Hou, Xinyao, Li, Bin, Liang, Hongshan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 15.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:There are multiple obstacles for the storage and digestion of orally administered bioactive macromolecules. This study developed a low-cost and sustained-release delivery system (sporopollenin exine capsules with zein/tannic acid modification) of proteins with excellent storage stability, and at the same time provided insights into the sustained-release mechanism through exploring the interaction between zein and tannic acid (TA). β-Galactosidase (β-Gal) was utilized as a model protein and loaded into sporopollenin exine capsules (SECs), which were then coated with the zein/TA system. Under the optimized zein/TA conditions, the zein/TA system showed better performance than the zein alone system in the sustained release of β-Gal, with the residual activity of about 70.26% after 24 h of simulated digestion. Evaluation of the storage stability demonstrated a β-Gal residual activity of nearly 90% for 28 days at 25 °C. Additionally, FTIR analysis demonstrated that the stability of the zein/TA system depends on both hydrogen bonding and certain covalent bonding through the Schiff-base reaction, and the sustained release is regulated by the bonding strength.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2576-6422
2576-6422
DOI:10.1021/acsabm.0c01623